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Abstract

In verbal fluency (VF) tests, subjects articulate words in a specified category during a short

test period (typically 60 s). Verbal fluency tests are widely used to study language develop-

ment and to evaluate memory retrieval in neuropsychiatric disorders. Performance is usually

measured as the total number of correct words retrieved. Here, we describe the properties

of a computerized VF (C-VF) test that tallies correct words and repetitions while providing

additional lexical measures of word frequency, syllable count, and typicality. In addition, the

C-VF permits (1) the analysis of the rate of responding over time, and (2) the analysis of the

semantic relationships between words using a new method, Explicit Semantic Analysis

(ESA), as well as the established semantic clustering and switching measures developed by

Troyer et al. (1997). In Experiment 1, we gathered normative data from 180 subjects ranging

in age from 18 to 82 years in semantic (“animals”) and phonemic (letter “F”) conditions. The

number of words retrieved in 90 s correlated with education and daily hours of computer-

use. The rate of word production declined sharply over time during both tests. In semantic

conditions, correct-word scores correlated strongly with the number of ESA and Troyer-

defined semantic switches as well as with an ESA-defined semantic organization index

(SOI). In phonemic conditions, ESA revealed significant semantic influences in the

sequence of words retrieved. In Experiment 2, we examined the test-retest reliability of dif-

ferent measures across three weekly tests in 40 young subjects. Different categories were

used for each semantic (“animals”, “parts of the body”, and “foods”) and phonemic (letters

“F”, “A”, and “S”) condition. After regressing out the influences of education and computer-

use, we found that correct-word z-scores in the first session did not differ from those of the

subjects in Experiment 1. Word production was uniformly greater in semantic than phonemic

conditions. Intraclass correlation coefficients (ICCs) of correct-word z-scores were higher

for phonemic (0.91) than semantic (0.77) tests. In semantic conditions, good reliability was

also seen for the SOI (ICC = 0.68) and ESA-defined switches in semantic categories (ICC =

0.62). In Experiment 3, we examined the performance of subjects from Experiment 2 when
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instructed to malinger: 38% showed abnormal (p< 0.05) performance in semantic condi-

tions. Simulated malingerers with abnormal scores could be distinguished with 80% sensi-

tivity and 89% specificity from subjects with abnormal scores in Experiment 1 using lexical,

temporal, and semantic measures. In Experiment 4, we tested patients with mild and severe

traumatic brain injury (mTBI and sTBI). Patients with mTBI performed within the normal

range, while patients with sTBI showed significant impairments in correct-word z-scores and

category shifts. The lexical, temporal, and semantic measures of the C-VF provide an auto-

mated and comprehensive description of verbal fluency performance.

Introduction

In verbal fluency (VF) tests such as the Controlled Oral Word Association Test (COWAT)[1],

subjects retrieve as many words as possible in semantic (e.g., “animals”, “foods”, etc.) or pho-

nemic (e.g., words beginning with “F”, “A”, or “S”) categories during a limited period of time

(usually 60 s). Verbal fluency tests are routinely used to evaluate cognitive function in clinical

disorders, including Alzheimer’s disease [2], Huntington’s disease [3], attention deficit disor-

ders [4], traumatic brain injury (TBI) [5], and aphasia [6, 7]. Correct-word scores reflect lexical

retrieval [8, 9] and executive control [10], and are most severely impaired following lesions of

the left frontal and left temporal lobes [11, 12].

Oral VF tests were introduced by Benton and colleagues in the 1960’s [13] and are still rou-

tinely used to evaluate memory retrieval in neuropsychiatric and developmental disorders

[14–16]. Test administration and scoring procedures have remained largely unchanged over

the six decades since VF testing was introduced: investigators typically transcribe the words

with pencil-and-paper and tally the total number of correct words retrieved (i.e., total words

minus repeated words and out-of-category words). Here, we describe a computerized VF test

(C-VF) that standardizes test administration and scoring and permits the automated analysis

of lexical, temporal, and semantic factors that provide further insight into VF performance.

Table 1 summarizes the mean correct-word scores of recent large-scale VF studies. Despite

the apparent simplicity of the test, there are significant discrepancies in the correct-word

scores obtained in different normative groups of similar age and education. For example, the

40–49 year old subjects in the Delis-Kaplan Executive Function System (D-KEFS) normative

data set [17] retrieved 18.33 correct words in the “animals” semantic category. This was 0.20

standard deviations below the age-matched norms (20.7) of Tombaugh et al. (1999) [18] [t(94) =

-1.08, NS], 0.73 standard deviations below the age-matched Caucasian norms (23.0) of Gladsjo

et al. (1999) [19] [t(187) = -4.54, p<0.0001], and more than one standard deviation below the

German “animal” norms (26.2) of Then et al. (2014) [20] [t(116) = -10.40, p< 0.0001].

These discrepancies likely reflect differences in test administration and scoring [21], lan-

guage effects [22], and differences in culture [19]. Test administration procedures may differ

as to when the 60 s test begins (e.g., with the first word articulated or with the “begin” com-

mand), and vary in the extent to which words articulated at the end of the test period are

included in the correct-word score. There may also be differences in procedures for correcting

errors, classifying ambiguous responses (e.g., “dinosaur” in the animal category), and encour-

aging subjects to continue producing words late in the test period.

Scoring procedures can also differ. For example, some examiners exclude subcategory

names (e.g., “fish”) from correct-word scores when members in the subcategory (e.g., “trout”)

are retrieved [23], while others include both words. Moreover, although inter-rater scoring
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reliability is generally high [24], correct and repeated words are tallied manually, introducing

possible scoring errors.

On average, about seven words are retrieved in the first 15 s of the semantic fluency test [25,

26], a production rate (i.e., 28 words-per-minute) that exceeds typical handwriting speed (14

to 18 words-per minute) [27]. As a result, response transcription often falls behind report.

Transcription complexity also varies with test format. For example, in the D-KEFS version of

the VF test, words are transcribed onto different portions of the scoring sheet during each 15 s

interval, so that the examiner will sometimes be transcribing one word, listening to another,

and, at the same time, monitoring elapsed time and deciding where to write the next response.

While it is easy to tally correct-word scores, the analysis of the lexical, temporal, and seman-

tic characteristics of word retrieval is more challenging and is rarely performed outside of

research laboratories. However, previous studies show that these supplementary measures

enhance the clinical sensitivity of VF testing, as described below.

Lexical measures of verbal fluency

Several lexical measures have proven useful in interpreting VF test results. For example, studies

have found that subjects who use frequent, typical words have low correct-word scores [28].

Juhasz et al. (2014) [28] compared the performance of patients with schizophrenia and controls

and found that schizophrenics retrieved more frequent, typical words. Vita et al. (2014) [29]

studied patients with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Both the

MCI and AD groups used more typical words than controls. Moreover, the typicality scores in

MCI patients were more predictive of their conversion to AD than their correct-word scores.

Table 1. Large scale studies of verbal fluency since 1999.

STUDY CHACTERISTICS SEMANTIC PHONEMIC

No. Age Edu CW SD CV CWs SD CV "F"

Gladsjo et al, 1999 768 52.12 14.09 19.54 5.39 0.28 40.34 12.6 0.31 14.07

Sugarman et al., 2015 431 49.60 13.10 18.40 5.30 0.29 33.60 11.90 0.35 11.72

Hankee et al, 2013 1907 67.00 15.00 18.10 5.10 0.28 38.00 12.4 0.33 13.25

de Azeredo Passos et al, 2015 4900 55.00 14+ 20.00 14.00

Vanderploeg et al., 2005 3057 38.42 13.27 20.49 5.09 0.25 34.63 10.75 0.31 12.07

van Der Elst et al, 2006 1825 51.62 11.22 19.80

Then et al, 2014 2927 62.00 12.00 23.50 6.22 0.26

Hoogendam et al, 2014 4422 71.80 12.50 21.50 5.80 0.27

Feeney et al, 2013 4553 62.80 12.00 20.50 9.60 0.47

van Hooren et al, 2009 574 71.00 12.00 20.90 5.50 0.26

Wecker et al., 2005 719 50.96 13.11 18.33 4.64 0.25

Tombaugh et al. 1999 735 67 .40 11.4 16.90 5.00 0.30

Ammann et al, 2013 2157 73.00 14.00 39.70 12.50 0.31 13.84

Tombaugh et al. 1999 1300 52.30 12.90 37.50 13.10 0.35 14.40

Zhong et al., 2014 952 73.30 12.90 33.80 11.80 0.35 11.78

Mean 2082 59.89 12.87 19.83 5.76 0.29 36.80 12.14 0.33 13.14

Experiment 1 180 40.03 14.52 20.09 4.88 0.24 14.64 4.96 0.34 14.64

Edu = approximate years of education; CW = correct words; SD = standard deviation; CV = coefficient of variation; “F” = estimated number of words

beginning with “F” in phonemic conditions (F-words were 34.9% of FAS word totals in Tombaugh et al., 1999). Semantic conditions were “animals”. Data

from Experiment 1 show values after 60 s for “animals” and letter “F”. The de Azeredo Passos results show medians (not means) for highly educated

middle-aged subgroup of Brazilian civil servants.

doi:10.1371/journal.pone.0166439.t001
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The temporal decline of word production

The rate of word retrieval declines sharply over the retrieval period [30–33] with subjects typi-

cally retrieving roughly two-thirds of their word total during the first half of the test [25]. Fer-

naeus and colleagues (1998) [34] argued that retrieval in the early and late portions of the test

reflected semi-automatic and effortful processes, respectively, and found that patients with AD

[35] and white-matter hyperintensities [36] showed disproportionate reductions early in the

test. Others have found early-retrieval deficits in patients with traumatic brain injury [37] and

children with attention deficit hyperactivity disorder (ADHD) [38].

Semantic analysis of verbal fluency

In VF testing, words are generally retrieved in semantically related clusters [26, 32, 33]. Troyer

et al. (1997) [39] developed a widely used procedure for analyzing semantic clusters in the

“animals” category. They defined 22 subcategories of animals based on living environment

(e.g., Africa, North America, Australia, etc.), human use (e.g., pets, beasts of burden, animals

used for their fur), and zoological classification (e.g., felines, canids, primates, etc.). They

found that young subjects retrieved 21.8 words during the 60 s test, with 10.6 switches between

subcategories, whereas older subjects retrieved fewer words and showed a corresponding

reduction in the number of subcategory switches. In a subsequent study [40], they found that

patients with lesions of the left frontal lobe showed a reduction in the number of switches

between subcategories, while patients with lesions of the left temporal lobe showed a reduction

in the size of clusters. Subsequent studies have used the subcategory classification methods to

study semantic organization during language development [41], aging [42, 43], and in clinical

populations with Alzheimer’s disease [44], schizophrenia [45], and TBI [46, 47].

Despite this fruitful line of research, there are several limitations associated with the use of a
priori subcategories. First, subcategories must be defined for each category tested (e.g., “ani-

mals”, “cars”, “foods”, etc.). In addition, many words can be assigned to multiple subcatego-

ries. For example, in the classification scheme of Troyer et al. (1997) [39], a rabbit is classified

as a North American animal, a pet, a farm animal, and an animal used for its fur. This results

in ambiguity in identifying the words associated with subcategory switches. For example, there

are no clear subcategory switches in the Troyer-based analysis in the seven-word sequence

“rabbit, cat, tiger, lion, zebra, crocodile, whale” because words 1 and 2 are pets, words 2, 3, and

4 are felines, words 4, 5, and 6 are African animals (tigers were incorrectly categorized as Afri-

can animals), and words 6 and 7 are water animals. Thus, while there are four subcategories, at

no point is a word associated with an unambiguous switch between subcategories because

“cat” is both a pet and a feline, “lion” is both a feline and an African animal, and “crocodile” is

both an African animal and a water animal.

Although different subcategorization schemes have been proposed by different authors

[48–51], any a priori subcategorization scheme necessarily represents only a small fraction of

possible subcategories. For example, in the Troyer et al. (1997) [39] scheme, there is no sepa-

rate subcategory for “Ocean” animals: whales, Orcas, and sea lions are included with frogs,

toads, and alligators in the “water animal” subcategory. North American, Arctic, African, and

Australian animals are defined subcategories, but there are no subcategories for South Ameri-

can, Asian, or European animals, nor are there subcategories for animals commonly hunted

(e.g., rabbits, ducks, deer, etc.), or fish commonly taken for sport (e.g., trout, salmon, etc.). In

addition, guidelines are lacking for categorizing supra-ordinate responses (e.g., “mammal”,

“quadruped”), extinct animals (e.g., “dinosaur”, “T-Rex”), and imaginary animals (e.g., “uni-

corn”, “Big Foot”). Finally, the manual classification of words into subcategories is time-
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consuming, shows only moderate test-retest reliability [52], and can result in discrepant scores

from different raters [53].

Several investigators have therefore turned to computational tools for measuring the

strength of semantic associations between words. Ledoux et al. (2014) [48] used latent seman-

tic analysis (LSA) [54], which reflects the co-occurrence of words in large text corpora, to

quantify the semantic relationships between successive words. They found that LSA measures

of semantic association were stronger for words that fell within predefined Troyer-like subcat-

egories than for switches across subcategories. Hills et al. (2012) [55] analyzed VF performance

in a 3-minute test using the Troyer method and a computerized semantic analysis method that

combined LSA-type analysis with information about word order [56]. Although semantic

association strengths varied substantially within the Troyer-defined clusters, they were

markedly reduced when successive words switched between Troyer subcategories.

In the current manuscript, we analyzed semantic relationships using the Troyer classifica-

tion scheme and a new computational method, Explicit Semantic Analysis (ESA) [57]. Explicit

Semantic Analysis quantifies the relationships between words in a “concept space” defined

from an analysis of Wikipedia entries [57]. Unlike a priori subcategory methods, ESA quanti-

fies the strength of semantic associations on a continuously varying scale based on the strength

of the association of word concept vectors derived from the analysis of Wikipedia Entries. This

enables ESA to analyzed phrases like “Bernanke takes charge” to determine that it refers to Ben

Bernanke and connects conceptual categories including the Federal Reserve Bank, the Chair-

man of the Federal Reserve Bank, Monetarism, and Inflation and Deflation [57]. Such analyses

are difficult for LSA-like methods that depend on the co-occurrence of words in text.

Explicit Semantic Analysis measures the semantic relationship between words as cosine

measures of their concept vectors [58]. Thus, ESA captures the semantic relatedness of words

based on an exhaustive analysis of all possible conceptual similarities (e.g., taxonomic, geo-

graphic, economic, linguistic, cultural, utilitarian, etc.). As a result, the association strength

between successive words (the pairwise ESA or PW-ESA) can differ markedly from those

obtained with a priori subcategory classification schemes. For example, the words “tiger” and

“shark” fall into separate, pre-defined Troyer subcategories (African animals and water ani-

mals). However, “tiger” and “shark” have strong associations in ESA concept space (e.g., both

are threatening apex predators) and the two words occur together in the species name “tiger

shark”. Thus, the PW-ESA cosine measure of the association between “tiger” and “shark”

exceeds that of many word pairs (e.g., “ostrich and “monkey”) that are included in the same

Troyer subcategory (i.e., African animals). Conversely, “toad” and “whale” show low PW-ESA

association strengths, but are included within the same Troyer subcategory (water animals).

We describe four C-VF experiments that analyze standard VF scores (correct words and

repetitions), lexical measures (word frequency, length, and typicality), temporal decline in the

rate of word retrieval, and the semantic organization of word retrieval using Troyer methods

and novel ESA techniques. In Experiment 1, 180 subjects (ages 18 to 82 years) were studied to

characterize the influence of demographic factors (e.g., age, education, and sex) on these per-

formance metrics.

Relatively little is known about the psychometric properties of lexical, temporal, and seman-

tic measures of VF performance. In Experiment 2, a group of 40 young subjects underwent

three test sessions at weekly intervals. The first session (Experiment 2a) was used to evaluate

whether the regression functions developed in Experiment 1 could account for the perfor-

mance of subjects in Experiment 2. Experiment 2b and 2c were used to analyze the test-retest

reliability of lexical, temporal, and semantic measures of VF performance.

Experiment 3 investigated the effects of simulated malingering on VF performance using

the participants from Experiment 2. The goal was to determine whether simulated malingerers
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with abnormal correct-word scores could be discriminated from control subjects with abnor-

mal correct-word scores based on the analysis of lexical, temporal, and semantic measures.

Finally, in Experiment 4, we investigated C-VF performance in 25 patients who had suf-

fered mild or severe TBI. Previous studies have suggested that patients with mild TBI generally

have correct-word scores within the normal range, while patients with severe TBI generally

show deficits [5]. However, little is known about the effects of TBI on lexical, temporal, and

semantic measures of VF performance.

Experiment 1. Demographic Influences on Verbal Fluency

In Experiment 1, we studied 180 subjects ranging in age from 18 to 82 years to analyze the

effects of age, education, and sex on correct-word scores in semantic (“animals”) and phone-

mic (“F”) conditions. Previous studies have generally shown significant age-related declines in

correct-word scores [18, 59–62], with larger declines in semantic than phonemic conditions

[18, 24, 63–65]. An age-related increase in the incidence of repeated words has also been

reported [66].

Education is also strongly correlated with correct-word scores [20, 62, 64, 67]. Because edu-

cation levels increased throughout the 20th century, there has been an attendant increase in

correct-word scores in cross-sectional samples tested at decade intervals [68]. As a result, cor-

relations of age with correct-word scores in cross-sectional studies may overestimate the influ-

ence of age itself, unless education is also factored out [69].

Variable effects of sex on VF performance have been reported: many studies have failed to

find significant sex differences [42, 60, 70], while others have found that women have superior

performance [62, 69, 71]. Sex differences are further complicated by the different familiarity of

men and women with particular semantic categories. For example, men typically retrieve

more words than women when tested with “cars” and “tools”, while women retrieve more

words than men when tested with “fruits” [23, 59, 72]. However, most previous studies have

found no significant sex differences in the “animals” category used here [59, 70].

Experiment 1: Methods

Ethics statement. Subjects in all experiments gave informed written consent following

procedures approved by the Institutional Review Board of the Veterans Affairs Northern Cali-

fornia Health Care System (VANCHCS) and were paid for their participation.

Subjects. We studied 180 control subjects, whose demographic characteristics are

included in Table 2. The subjects ranged in age from 18 to 82 years (mean age = 40.0 years)

and had an average education of 14.5 years. Sixty-one percent were male.

Subjects were recruited from advertisements on Craigslist (sfbay.craigslist.org) and pre-

existing control populations. They were required to meet the following inclusion criteria: (a)

native English speaker; (b) no current or prior history of psychiatric illness; (c) no current sub-

stance abuse; (d) no concurrent history of neurologic disease known to affect cognitive func-

tioning; (e) on a stable dosage of any required medication; (f) auditory functioning sufficient

to understanding normal conversational speech; and (g) visual acuity normal or corrected to

20/40 or better. Subject ethnicities were 64% Caucasian, 12% African American, 14% Asian,

10% Hispanic/Latino, 2% Hawaiian/Pacific Islander, 2% American Indian/Alaskan Native,

and 4% “other”. The population was somewhat unusual because of the high levels of education

among older volunteers: 47% of the subjects older than 65 years had completed college, com-

pared to 11.7% of adults over 65 in the 2009 US census.

Procedure. Verbal Fluency was the sixth test in the California Cognitive Assessment Bat-

tery (CCAB) and required 4–5 minutes per subject. Each CCAB test session included the
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following computerized tests and questionnaires: finger tapping [73, 74], simple reaction time

[75, 76], Stroop, digit span forward and backward [77, 78], verbal list learning, visuospatial

span [79, 80], trail making [81], vocabulary, design fluency [82], the Wechsler Test of Adult

Reading (WTAR), choice reaction time [75, 83], risk and loss avoidance, delay discounting,

the Paced Auditory Serial Addition Task (PASAT) [84], the Cognitive Failures Questionnaire

(CFQ) and the Posttraumatic Stress Disorder Checklist (PCL) [85], and a local traumatic brain

injury questionnaire. Testing was performed in a quiet room using a standard Personal Com-

puter (PC) controlled by Presentation1 software (Versions 13 and 14, NeuroBehavioral Sys-

tems, Berkeley CA).

Because many of the CCAB tests required subjects to respond with the mouse, we also

recorded subject computer-use on a separate questionnaire using an 8-point Likert scale, with the

options of “1: Never; 2: Less than 1 hour per week; 3: Less than 1 hour per day; 4: 1–2 hours per

day; 5: 2–3 hours per day; 6: 3–4 hours per day; 7: 4–6 hours per day; 8: More than 6 hours per

day”. Subjects reported an average computer-use score of 5.09 (an average of 2–3 hours per day).

In previous studies, we found that daily hours of computer-use correlated with performance both

on tests that required responding with the mouse [75, 76, 79, 81, 85] and tests that required only

verbal output, such as digit span [78] and the paced auditory serial addition test [84].

Software. An executable, open-source version of the C-VF test is available for Windows

computers at http://www.ebire.org/hcnlab/programs.htm along with a Python program that

can score “animal” fluency test results to provide measures of word syllable count, word fre-

quency, word typicality, and the number of repeated words, while also performing semantic

analyses using both ESA and Troyer methods. Excel spreadsheets of the data are available at

https://dx.doi.org/10.6084/m9.figshare.4220619

Apparatus and stimuli. Subjects were instructed to produce as many words as possible

during two 90 s tests: (1) phonemic fluency (letter “F”) and (2) semantic fluency (“animals”),

with the same test order used for all subjects. Before each test, subjects were told that proper

nouns, repetitions, derivatives, and words outside the category would not be accepted.

The examiner, sitting to the left of the subject, typed each word or abbreviation as rapidly as

possible. The use of the keyboard facilitated word transcription since typing speed (30–40

words-per-minute) [86] is typically about twice the speed of handwriting. In addition, the time

of occurrence of the first letter in each word was logged and analyzed to examine the time-

course of word production.

After 90 s, the experimenter told the subject that the test was over. After the test, the experi-

menter edited the words for spelling errors and expanded words that had been abbreviated to

permit lexical and semantic analysis.

Lexical analysis. The average frequency of each word was quantified from the American

National Corpus database [87]. Word frequencies were transformed into log word-frequency.

A syllable count was also obtained to quantify word length. In order to quantify word typical-

ity, we created a list of animal names produced by the 220 control subjects in Experiment 1

and Experiment 2a and sorted the list by the number of subjects who produced each word.

Words differed greatly in typicality. For example, more than 80% of subjects produced the

words “cat” and “dog”, while more than 180 animal names were produced by only a single sub-

ject. Overall, the 30 most frequent animal names accounted for 50.1% of all words produced.

Because typicality scores were highly skewed (i.e., by words produced by only a few sub-

jects), we quantified the median typicality of the words produced. Typicality scores were con-

verted into percentages by dividing median typicality by the total number of subjects.

Typicality scores ranged from 8.6% for the subject who produced the least typical words to

41.8% for the subject who produced the most typical words, with an average of 25.2% for the

entire population.
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Temporal analysis. The latency of the first letter typed by the experimenter was used to

estimate the onset latency of each word and calculate interword intervals. In comparison with

voice trigger measures of word onset latencies in seven subjects, first-letter typing latencies

averaged 0.87 s (SD = 0.44 s), with 95% of latencies below 1.87 s. We found a very strong corre-

lation between interword intervals measured using voice trigger and typing latencies

[r = 0.984, t(200) = 76.88, p<0.0001]. Word latencies were used to assign words to six bins,

each 15 s in width. The temporal decline percentage (TDP), the percentage of words retrieved

during the first half of the test relative to total word production, was used to summarize the

rate of temporal decline for each subject.

Troyer analysis of switches and clusters. Words gathered during semantic (“animals”)

testing were assigned to 22 non-exclusive subcategories based on living environment (e.g.,

Africa, North America, Artic/Far North, etc.), human use (e.g., pets, farm animals, etc.), and

taxonomy (e.g., primates, fish, etc.), following the procedures described in Troyer et al. (1997)

[39]. Switches were defined as transitions between categories. The number of switches was

obtained along with the number and size of multi-word clusters. All words, including repeti-

tions, were included in semantic analyses.

ESA analysis. We computationally analyzed the semantic associations between words

using ESA [57]. Pairwise ESA cosines were calculated automatically from a precomputed 155

MB database of word pair associations derived from Wikipedia entries from 2005 (github.

com/ticcky/esalib.git). ESA analysis of the “animals” condition showed that the semantic relat-

edness between successive pairs of words produced by subjects, the pairwise (PW) ESA, ranged

from 0.000 (“cockatiel” to “zebra”) to 0.893 (“red-fox” to “gray-fox”). Insofar as word retrieval

reflected semantic priming between successive words, we expected higher PW-ESA cosines in

comparison to the average ESA cosine (A-ESA) between all of the words retrieved by a subject.

In addition, because words belonging to a semantic category (e.g., “animals”) share consider-

able conceptual similarity, we anticipated higher PW- and A-ESA cosines in semantic condi-

tions than in phonemic conditions.

We also developed a semantic organization index (SOI): the PW-ESA/A-ESA ratio. In

semantic testing, this ratio ranged from below 1.0 (for subjects who retrieved animal names in

a sequential order that lacked any obvious conceptual basis) to more than 4.0 (for subjects who

retrieved animal names in multiple distinct, but tightly related, clusters). We anticipated that

SOIs would be higher in semantic than phonemic conditions. However, because of the funda-

mental semantic organization of verbal memory [88], we hypothesized that some semantic

influences (i.e., SOIs above 1.0) would also be evident during phonemic testing [26].

ESA analysis of switches and clusters. We categorized ESA switches as PW-ESA values

that fell below a fixed percentage of the A-ESA in each subject. The number of ESA switches

varied predictably from a mean of 11.45 switches at a threshold of 100% of the A-ESA to a

mean of 6.40 switches at a threshold of 50% of the A-ESA. The threshold of 75% of the A-ESA

was used for further analysis since it yielded a number of switches (mean = 9.20) that was simi-

lar to the number of switches identified with the Troyer method. The number and size of ESA-

defined multi-word clusters were also quantified for each subject.

Statistical analysis. The results were analyzed with Analysis of Variance (ANOVA) using

CLEAVE (www.ebire.org/hcnlab). Greenhouse-Geisser corrections of degrees of freedom

were uniformly used in computing p values in order to correct for covariation among factors

and interactions, with effect sizes reported as partial ω2. Pearson correlation analysis was also

used with significance levels evaluated with Student’s t-tests. Linear multiple regression was

used to evaluate the contribution of multiple demographic factors on performance and to pro-

duce correct-word z-scores.
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Experiment 1: Results

Fig 1 shows the number of correct words retrieved in semantic (“animal”, top) and phonemic

(“F”, bottom) conditions as a function of age for the subjects in Experiment 1 (blue diamonds)

and for the subjects in the other experiments discussed below. Figs S1 Fig and S2 Fig show the

correct-word scores as a function of education and computer-use.

Subjects retrieved more correct words in semantic than phonemic conditions [26.6 versus

18.8, F(1,179) = 1194.05, p< 0.0001, ω2 = 0.52]. Subjects retrieved 20.1 animal names and 14.6

“F” words over the first 60 s of the test; i.e., correct-word scores were similar to the average

scores in previous studies using 60 s testing periods (see Table 1). Table 2 provides mean scores

of correct words (CW) in semantic and phonemic conditions as well as scores for the other

metrics discussed below.

Table 3 and Table 4 show the respective correlation matrices for the semantic and phone-

mic conditions of Experiment 1. Age had a borderline influence on correct-word scores in

semantic conditions [r = -0.13, t(178) = 1.75, p< 0.05, one-tailed], but did not influence cor-

rect-word scores in phonemic conditions [r = -0.02, NS]. Sex failed to significantly influence

scores in either condition [r = -0.01 and r = -0.12, respectively]. In contrast, Education

increased correct-word scores in both semantic [r = 0.31, t(178) = 4.35, p< 0.0001] and pho-

nemic [r = 0.19, t(178) = 2.58, p< 0.02] conditions. We also found significant correlations

between computer-use and correct-word scores on both semantic [r = 0.33, t(178) = 4.66,

p< 0.0001] and phonemic [r = 0.27, t(178) = 3.74, p< 0.0007] tests.

Multiple regression with Age, Education, and Computer-use as factors accounted for

17.0% of the variance in semantic conditions and 8.5% of the variance in phonemic condi-

tions. The contribution of Age to the multiple regression was not significant in either condi-

tion. However, Education and Computer-use made significant, independent contributions

in semantic conditions [respectively, t(176) = 3.51, p < 0.0006 and t(176) = 2.81, p < 0.006].

In the phonemic condition, the independent contribution of Education only approached

significance, while the influence of Computer-use persisted [t(176) = 3.04, p < 0.003]. Cor-

rect-word z-scores were derived after regressing out the influence of Education and Com-

puter-use using the equation CW = 10.61 + 0.781�Education + 0.912�Computer-use for

“animal” fluency, and the equation CW = 9.65 + 0.356�Education + 0.789�Computer-use

for letter “F” fluency.

The percentage of repeated words was small in the semantic condition (1.28%), with only

20% of subjects producing repetitions. Repetitions were more frequent (2.61%) in the phone-

mic condition [F(1,179) = 11.11, p< 0.001, ω2 = 0.05], with 31% of subjects producing repeti-

tions. Older subjects produced more repetitions than younger subjects, resulting in significant

correlations between age and the percentage of repetitions in semantic [r = 0.29, t(178) = 4.04,

p< 0.0001] and phonemic [r = 0.42, t(178) = 6.17, p< 0.0001] conditions.

Fig 2 plots the correct-word z-scores of individual subjects (blue diamonds) in semantic

versus phonemic conditions. Significant correlations were seen between semantic and phone-

mic z-scores [r = 0.30, t(178) = 4.20, p< 0.0001], correct-word scores [r = 0.38, t(178) = 5.48,

p< 0.0001], and the percentage of repeated words [r = 0.42, t(178) = 6.17, p< 0.0001].

Temporal analysis. Fig 3 shows the rate of word production for each 15 s interval in the

semantic (top) and phonemic (bottom) conditions of Experiment 1 (thick blue line). The word

production rate declined sharply, with the temporal decline percentage (TDP) averaging

62.6% in semantic conditions and 65.3% in phonemic conditions. The TDP was slightly

greater in phonemic than semantic tests [F(1,179) = 5.79, p< 0.02, ω2 = 0.03]. Subjects with

increased TDPs showed reduced correct-word scores in both semantic [r = -0.49, t(178) =

-7.50, p< 0.0001] and phonemic [r = -0.26, t(178) = -3.59, p< 0.0005] conditions.
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Lexical analysis. Subjects used more frequent words in phonemic than semantic tests [F

(1,179) = 660.03, p< 0.0001, ω2 = 0.79]. As expected, subjects with lower correct-word scores

used more frequent words in both conditions [semantic: r = -0.40, t(178) = -5.82, p< 0.0001;

phonemic: r = -0.34, t(178) = -4.82, p< 0.0001]. Word syllable counts were also greater in

“animal” than “F” conditions [F(1,179) = 180.43, p< 0.0001, ω2 = 0.50], and were negatively

correlated with word frequency in both conditions [semantic, r = -0.71, t(178) = -13.45,

p< 0.0001; phonemic, r = -0.43, t(178) = -6.35, p< 0.0001]. However, syllable counts did not

significantly correlate with correct-word scores in either test.

Word typicality was only analyzed in semantic conditions. Typicality scores showed strong

correlations with correct-word scores [r = -0.58, t(178) = -9.45, p< 0.0001] and word fre-

quency [r = 0.69, t(178) = 12.72, p< 0.0001]. Post-hoc analysis showed that the correct-word

scores had a stronger correlation with word typicality than word frequency [z = 2.25,

p< 0.03]. In addition, typicality scores correlated strongly with the TDP [r = 0.51, t(178) =

7.91, p< 0.0001]; i.e., subjects who produced more typical words showed a more rapid tempo-

ral decline in retrieval.

Semantic analysis. In the semantic condition, PW-ESA cosines were more than twice as

large as A-ESA values, producing a mean SOI of 2.07. As shown in Table 3, PW-ESA and

A-ESA measures were positively correlated with each other [r = 0.50, t(178) = 7.70, p<

0.0001]. PW-ESA measures showed a positive correlation with correct-word scores [r = 0.17,

t(178) = 2.30, p< 0.03] while A-ESA measures showed a more substantial negative correlation

[r = -0.50, t(178) = -7.70, p< 0.0001].

Fig 1. Correct word scores in semantic (“animals”) and phonemic (letter “F”) conditions as a function of age.

The data are from Experiment 1, Experiment 2a, Experiment 3 (simulated malingering), and Experiment 4 (mild

TBI = mTBI, filled red circles; severe TBI = sTBI, cross-hatched red circles). The age-regression slopes from Experiment

1 are shown.

doi:10.1371/journal.pone.0166439.g001

Table 3. Correlation matrix for the semantic (“animals”) condition in experiment 1.

Edu C-use CW %RW Syll LWF Typ PW-ESA A-ESA SOI TDP ESA-Switch ESA-MWC Clustersize Troyer switch

Age 0.16 -0.27 -0.13 0.29 -0.08 0.05 -0.05 0.07 0.05 0.06 0.00 -0.09 -0.07 -0.03 -0.13

Edu 0.32 0.31 -0.06 0.03 -0.11 -0.18 -0.01 -0.28 0.25 -0.09 0.27 0.29 -0.09 0.31

C-use 0.33 -0.11 0.07 -0.13 -0.11 -0.02 -0.19 0.19 -0.11 0.22 0.30 -0.03 0.30

CW -0.13 0.09 -0.40 -0.58 0.17 -0.50 0.61 -0.49 0.59 0.73 0.18 0.59

%RW -0.17 0.14 0.08 -0.05 0.08 -0.10 0.13 0.02 -0.01 -0.04 0.02

Syll -0.70 -0.27 0.08 0.03 0.08 -0.06 0.28 0.09 -0.14 0.11

LWF 0.69 -0.27 0.14 -0.39 0.37 -0.52 -0.29 0.11 -0.25

Typ -0.22 0.38 -0.52 0.51 -0.51 -0.44 0.02 -0.36

PW-ESA 0.50 0.64 -0.13 0.02 0.10 0.13 -0.22

A-ESA -0.26 0.33 -0.30 -0.39 -0.07 -0.49

SOI -0.40 0.23 0.42 0.23 0.13

TDP -0.39 -0.26 -0.12 -0.29

ESW 0.61 -0.45 0.67

EMW -0.42 0.41

ECS 0.05

Abbreviations: ESA = Explicit Semantic Analysis association strength of words in the order produced; A-ESA = ESA association strength for words

produced in random order. See Table 2 for additional abbreviations. Given the sample size (N = 180), correlations > |0.15| are significant at p < 0.05,

correlations > |0.20| are significant at p < 0.01, correlations > |0.25| are significant at p < 0.001, and correlations > |0.29| are significant at p < 0.0001.

doi:10.1371/journal.pone.0166439.t003
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Fig 4 shows the relationship between correct-word z-scores and SOIs for the subjects in

Experiment 1 (blue diamonds) and subsequent experiments. The correlation of SOIs with cor-

rect-word scores [r = 0.61, t(178) = 10.27, p< 0.0001] indicates that subjects who retrieved

successive words that were closely related (i.e., a high PW-ESA) in distinct semantic categories

(i.e., a low A-ESA) retrieved more correct words. The SOI also showed significant negative

correlations with typicality [r = -0.52, t(178) = -8.12, p< 0.0001], indicating that subjects who

used more typical words had poorer semantic organization, and with the TDP [r = -0.40, t

(178) = -5.82, p< 0.0001], indicating that subjects with better semantic organization retrieved

more words later in the test.

All measures of semantic relatedness were predictably reduced in phonemic conditions

compared to semantic conditions, including the PW-ESA [F(1,179) = 346.71, p< 0.0001, ω2 =

0.66], the A-ESA [F(1,179) = 820.52, p< 0.0001, ω2 = 0.82], and the SOI [F(1,179) = 82.41,

p< 0.0001, ω2 = 0.31]. Comparisons between semantic and phonemic tests showed no signifi-

cant across-condition correlations for either the PW-ESA or SOI, and only a minimal correla-

tion for the A-ESA [r = 0.15, t(178) = 2.02, p< 0.05].

Nevertheless, the SOI significantly exceeded 1.0 [mean = 1.39, F(1,179) = 40.86, p< 0.0001,

ω2 = 0.18] in phonemic tests, indicating a significant semantic influence on the order of words

retrieved despite the explicitly phonemic nature of the task. The PW-ESA was not significantly

correlated with correct-word scores in phonemic conditions. In contrast, there was a signifi-

cant negative correlation between correct-word scores and the A-ESA [r = -0.31, t(178) =

-4.35, p< 0.0001]; i.e., subjects who retrieved words in more distinct semantic categories dur-

ing phonemic testing produced more correct words.

Semantic analysis: switches and clusters. Switches and clusters were only examined in

semantic conditions. Subjects produced an average of 9.18 ESA-defined switches and 12.10

Troyer-defined switches. The number of ESA- and Troyer-defined switches correlated strongly in

individual subjects [r = 0.67, t(178) = 12.04, p< 0.0001]. Moreover, individual words classified as

Troyer switches were often classified as ESA switches [r = 0.41, Χ2(1) = 813.6, p< 0.0001].

As shown in Table 3, both the number of ESA- and Troyer-defined switches correlated

strongly with correct-word scores [r = 0.59, t(178) = 9.75, p< 0.0001]. The number of switches

was not significantly correlated with age for either measure, but the number of switches

increased in subjects with greater education [ESA: r = 0.27, t(178) = 3.74, p< 0.0003; Troyer:

r = 0.31, t(178) = 4.35, p< 0.0003] and computer-use [ESA: r = 0.22, t(178) = 3.00, p< 0.004;

Troyer: r = 0.30, t(178) = 4.20, p< 0.0001].

Table 4. Correlation matrix for the phonemic (letter “f”) condition in experiment 1.

Edu C-use CW %RW Syll LWF PW-ESA A-ESA SOI TDP

Age 0.16 -0.27 -0.02 0.42 0.19 -0.07 0.02 -0.05 0.04 0.03

Edu 0.32 0.19 0.05 0.00 -0.02 -0.01 -0.15 0.08 -0.14

C-use 0.27 -0.19 -0.09 0.04 -0.04 -0.20 0.07 0.03

CWs -0.14 0.09 -0.04 -0.01 -0.31 0.13 -0.26

%RWs 0.11 -0.10 0.01 0.08 -0.04 0.01

Syll -0.07 0.02 -0.17 0.10 -0.01

LWF 0.15 0.19 0.09 0.04

PW-ESA 0.56 0.84 0.11

A-ESA 0.10 0.13

SOI 0.05

See Tables 2 and 3 for abbreviations.

doi:10.1371/journal.pone.0166439.t004
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The number of ESA- and Troyer-defined switches correlated strongly with lexical mea-

sures, including log word frequency and typicality [p<0.0001 for all comparisons]. ESA, but

not Troyer switches, also correlated significantly with syllable count [p< 0.0002]. Subjects who

produced more switches showed reduced TDPs [p<0.0001 for both comparisons]. In general,

statistical comparisons of correlation coefficients showed that ESA switches correlated more

strongly with lexical and temporal measures than Troyer switches [p< 0.003 to p< 0.09 for the

different comparisons].

Fig 2. Correct-word z-scores in semantic and phonemic conditions. Z-scores were derived after adjusting for education and computer-use using

the regression equation from Experiment 1. The horizontal and vertical red lines show abnormality thresholds (p < 0.05) in semantic and phonemic

conditions, respectively. The regression line is from the data in Experiment 1. See Fig 1 for further details.

doi:10.1371/journal.pone.0166439.g002
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Fig 3. Rate of word production over 15 s intervals in semantic (top) and phonemic (bottom) conditions.

Error bars show standard errors for Experiment 1 data. See Fig 1 for further details.

doi:10.1371/journal.pone.0166439.g003
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The number of multi-word clusters (mean ESA = 5.72, Troyer = 6.31) showed the strongest

correlation of any metric with correct-word scores [r = 0.73, t(178) = 14.25, p< 0.0001 for

both ESA and Troyer methods]. The number of multi-word clusters also correlated signifi-

cantly with education [ESA, p< 0.0001; Troyer, p< 0.002], computer-use [ESA: p< 0.0001;

Troyer: p < 0.004], and lexical factors including log word frequency [ESA: p< 0.0003; Troyer:

p< 0.005] and typicality [p< 0.0001 for both comparisons].

Cluster size (mean ESA = 4.06 words, Troyer = 3.21 words) also correlated significantly

with correct-word scores [ESA: p< 0.02; Troyer: p< 0.0001] and the SOI [ESA: p< 0.002;

Troyer: p < 0.0001]. Cluster size was not significantly correlated with age, education, or com-

puter-use for either method.

Experiment 1: Discussion

The subjects in Experiment 1 produced correct-word scores in semantic and phonemic condi-

tions that were in the mid-range of scores reported in previous large-scale studies (see

Table 1). In semantic conditions, correct-word scores correlated more weakly with age than in

many previous studies [18, 59, 71], presumably in part because of the high mean education

Fig 4. Correct word z-scores and semantic organization indices (SOIs) in the semantic (“animals”) conditions. The regression line is from

Experiment 1. See Fig 1 for further details.

doi:10.1371/journal.pone.0166439.g004
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level of our older subject population. Consistent with previous studies, age correlations were

further reduced in phonemic conditions [64]. However, we found a moderately strong age-

related increase in the percentage of repeated words in both conditions [66].

As in previous studies, we found significant effects of education on correct-word scores [18,

59, 62, 71]. In addition, we found a significant relationship between computer-use and cor-

rect-word scores that persisted after the effects of education had been factored out. These

results suggest that computer-use, like education, is a useful supplementary demographic cor-

relate of VF performance. There are two possible explanations for this correlation. First, IQ

may correlate with computer use. To evaluate this hypothesis, we examined the correlation

between computer-use and scores on the Wechsler Test of Adult Reading (WTAR), which cor-

relates strongly with measures of IQ [89, 90]. We found that computer-use was significantly

correlated with WTAR scores [r = 0.25 t(175) = 4.01, p<0.0001], and this correlation

remained significant after the effect of education had been factored out [t(174) = 2.66, p<

0.01]. Second, subjects who read with computers may benefit from the embedded links in

computer text that connect related topics. For example, the Wikipedia entry for “dog” provides

links to related species (e.g., wolves, jackals, coyotes, etc.) and different dog breeds. As a result,

computer links may strengthen semantic associations.

Temporal and lexical analysis. Word production rates declined throughout the test [25],

and subjects with increased TDPs showed reduced correct-word scores [91]. Word frequencies

were greater and syllable counts were reduced in phonemic conditions compared to semantic

conditions [25]. Word frequencies and word typicality showed predictably negative correla-

tions with correct-word scores in semantic conditions [29], with post-hoc analysis showing

that correct-word scores were more strongly correlated with word typicality than word fre-

quency. Subjects who used more frequent and typical words also showed a greater temporal

decline in word production.

Semantic analysis. In semantic conditions, the association between successively retrieved

words (PW-ESA) was more than twice as strong as the average associations among all words

retrieved (A-ESA). The PW-ESA/A-ESA ratio was used to create a semantic organization

index (SOI), which summarized the degree of semantic ordering of retrieval for each subject.

Subjects with greater correct-word scores showed higher SOIs, suggesting that they were able

to retrieve related words from more distinct semantic categories.

Explicit Semantic Analysis revealed predictably stronger semantic associations between

words in semantic than phonemic conditions. However, in phonemic conditions, the SOI sig-

nificantly exceeded 1.0, revealing significant semantic influences on the order of words

reported despite the explicit phonemic nature of the task [26].

Switches and clusters. We quantified switches and clusters in semantic conditions using

both Troyer [39] and ESA methods. The subjects in Experiment 1 produced 20.1 words and

9.2 Troyer-defined switches over 60 s, similar to the 19.5 words and 9.8 switches observed in

the normative study of Troyer (2000) [43]. Although the number of Troyer-defined switches

exceeded the number of ESA-defined switches, words identified as Troyer switches were often

identified as ESA switches (r = 0.41).

As in previous studies [39], the number of correct words correlated strongly with the num-

ber of semantic switches measured with both methods. This reflects in large part the arithmetic

relationship between the number of switches and the number of words retrieved: a subject

with N switches would necessarily retrieve at least N+1 words. An even stronger correlation

was found between correct words and the number of multi-word clusters, reflecting the fact

that a subject who produces retrieves N multi-word clusters would necessarily retrieve at least

2�N words. As in previous studies, the size of multi-word clusters was only weakly correlated

with correct-word scores [50, 52].
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We found strong correlations between semantic and lexical measures. For example, the

SOI, the number of switches, and the number of multi-word clusters all showed negative cor-

relations with word frequency and word typicality, implying that subjects with better semantic

organization retrieve less frequent and less typical words. Moreover, the SOI, number of

switches, and number of multi-word clusters were all negatively correlated with temporal

decline. Thus, subjects with better semantic organization were able to sustain effective word

retrieval later in the test.

Differences between switch and SOI measures. The SOI reflects the ability of subjects to

retrieve semantically related words in sequence (as reflected in a high PW-ESA) from distinct

regions of semantic memory (as reflected in a low A-ESA). Unlike the number of switches and

multi-word clusters, the SOI is not computationally related to correct-word scores. For exam-

ple, in a subject who retrieved 16 words in four tightly related, but highly distinct four-word

clusters (e.g., “Doberman, German Shepard, Rottweiler, Mastiff; Holstein, Angus, Brahma

bull, Charolais; Red tailed hawk, Cooper’s hawk, Bald Eagle, Osprey; Tarantula, Black widow,

Jumping spider, Wolf spider”), the PW-ESA would be high and the A-ESA low, resulting in a

high SOI despite a low correct-word score, only three switches and three multi-word clusters.

However, if the subject retrieved the same 16 words in clusters of two words each, the A-ESA

would remain unchanged, but the PW-ESA, and hence the SOI, would be reduced while the

number of semantic switches and multi-word clusters would double.

Semantic switches identified with ESA and Troyer methods. More words were identi-

fied as Troyer switches than ESA switches, in part reflecting the occasional strong semantic

associations between words in different Troyer subcategories (e.g., “tiger” and “shark”). The

increased number of Troyer switches may also reflect the non-exhaustive nature of Troyer sub-

categories. For example, there is no Troyer subcategory for Latin American animals. Hence, a

subject retrieving South American animals (e.g., “howler monkey, tapir, llama, spider monkey,

piranha, ocelot, harpy, etc.”) would produce more Troyer switches than ESA switches. Con-

versely, ESA would generally identify more switches than the Troyer method when words

occurred in multiple Troyer subcategories. For example, in the hypothetical sequence

described above with no Troyer switches (“rabbit, cat, tiger, lion, zebra, crocodile, whale”),

ESA would typically identify switches between “rabbit” and “cat”, “zebra” and “crocodile”, and

“crocodile” and “whale”.

The fact that ESA switches were defined by an arbitrary cutoff (e.g., 75% of the A-ESA) has

another important consequence: unlike Troyer methods, ESA will almost always identify seman-

tic switches in the list of words retrieved. For example, in a subject who reports only dog breeds

(e.g., “Dachshund, Great Dane, Chihuahua, Pug, Pekingese, Corgi, Basset, Beagle, Weimaraner,

German Shepard, Australian Shepard, Border Collie, Rottweiler, Pit Bull, Staffordshire, Wolf-

hound, Deerhound”), ESA switches would be identified between different breed types (e.g., com-

panion dogs, hunting dogs, etc.) and between dogs of different size. In contrast, no Troyer

switches would occur because all animals are both pets and canids there are no Troyer switches.

This example highlights another difference between ESA and Troyer methods: the determi-

nation of whether a word pair is an ESA switch depends on the other words retrieved. Thus, a

word pair (e.g., “Dachshund” and “Great Dane”) would be an ESA switch in a subject who

names only dog breeds, but would be clustered together in another subject who names a many

different types of animals. The context sensitivity of ESA makes it possible to apply to catego-

ries of different size (e.g., “animals”, “pets”, “breeds of dog”).

Limitations. A larger and more demographically varied subject population is needed to

ensure that the C-VF norms reported here are suitable for general use. In particular, our older

subjects were very well educated, which likely minimized age-related decline in correct-word

scores [18, 71, 92].
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Experiment 2: Generalization of Normative Data and Test-Retest

Reliability

Experiment 2 analyzed the results of repeated C-VF testing in 40 young and well-educated

subjects who were tested three times at weekly intervals. The first test session (Experiment 2a)

used the same two categories (“animals” and the letter “F”) as Experiment 1, while Experi-

ments 2b and 2c used different semantic categories and different letters.

We focused on two aspects of the results. First, we evaluated the extent to which the results

from Experiment 1 would generalize to a population of younger and somewhat better educated

subjects in Experiment 2a. We anticipated that the subjects in Experiment 2a would retrieve

more correct words than the subjects in Experiment 1, but would show similar correct-word

z-scores after the contributions of education and computer-use had been factored out using

the regression functions derived in Experiment 1.

Second, we were interested in the test-retest reliability of C-VF measures. High test-retest

reliabilities have been previously reported for correct-word scores in phonemic tests using dif-

ferent letters [18, 93, 94] (i.e., intraclass correlation coefficients, ICCs, above 0.75), along with

significant differences in the number of correct words retrieved (S>F>A) [18]. In contrast,

the percentage of repeated words has shown relatively low test-retest correlations (r< 0.25)

[53, 95].

Although significant differences have also been noted in correct-word scores for different

semantic categories (e.g., “animals” > “professions”) [59], the test-retest reliability of correct-

word scores when tests use different semantic categories has not previously been investigated.

We anticipated lower correlations between correct-words scores in semantic than phonemic

conditions since semantic fluency would likely be influenced to a greater degree by the differ-

ent interests and hobbies of subjects. For example, some subjects may have been members of

local zoological societies (proficient in the “animals” category), whereas others may have been

amateur chefs (proficient in the “foods” category).

The test-retest reliability of lexical, temporal, and semantic measures of VF performance

have not been studied in detail. Indeed, to our knowledge, no previous studies have examined

the test-retest reliability of word frequency, word length, or temporal changes in response rate

over time. Furthermore, the test-retest reliability of Troyer-defined switches and clusters in

semantic fluency tests has not been established, either with repeated tests in the “animals” cate-

gory or when different semantic categories are used.

Experiment 2: Methods

Subjects. Forty young volunteers (mean 25.8 years, range 18–46 years, 53% male) were

recruited primarily from online advertisements on Craigslist. Subjects who met the same

inclusion criteria listed in Experiment 1 volunteered to participate in three weekly test sessions.

As seen in Table 2, subjects were primarily college students who were significantly younger

[p< 0.01] and reported higher levels of computer-use [p< 0.03] than the subjects in Experi-

ment 1. Ethnically, 68% of the subjects were Caucasian, 11% Latino, 9% African American,

10% Asian, and 2% “other”.

Procedures. The test administration methods were identical to those described in Experi-

ment 1. In Experiments 2a, 2b, and 2c, the semantic categories were respectively “animals”,

“parts of the body”, and “foods”, and the phonemic categories were “F”, “A”, and “S”. The

order of the categories was identical for every subject. Because Troyer subcategories have not

yet been defined for “parts of the body” and “foods”, we did not perform Troyer analyses.

Statistical analysis. The results were analyzed with the methods used in Experiment 1,

while intraclass correlation coefficients (ICCs) were analyzed with SPSS (version 25).
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Experiment 2: Results

Table 2 includes summary performance means and standard deviations from the three test ses-

sions in Experiment 2 (2a, 2b, and 2c). Fig 1 includes the correct-word scores from subjects in

Experiment 2a (open red squares), Fig 2 shows the correct-word z-scores of individual subjects

in Experiment 2a, and Fig 3 shows the rate of word production in Experiment 2a (dark red

lines).

An ANOVA analysis of scores with Group (Experiment 1 vs Experiment 2a) and Test-type

(semantic and phonemic) as factors showed a Group effect [F(1,218) = 6.71, p< 0.02, ω2 =

0.03] due to greater correct-word scores in Experiment 2a. There was also a large effect of

Test-type [F(1,218) = 259.66, p< 0.0001, ω2 = 0.54] due to more correct words in semantic

than phonemic conditions, but no significant Group x Test-type interaction [F(1,218) = 0.35,

NS]. After correcting scores for education and computer-use using the regression equations

from Experiment 1, the effects of Group [F(1,218) = 3.23, p< 0.10] and Test-type [F(1,218) =

0.03, NS] were no longer significant.

Comparisons between Experiment 1 and Experiment 2a showed no significant differences

in the SOI [F(1,218) = 2.09, NS], the TDP [F(1,218) = 1.39, NS], the number of syllables [F

(1,218) = 0.53, NS], or word frequency [F(1,218) = 0.15, NS]. However, the subjects in Experi-

ment 2a had lower typicality scores than those in Experiment 1 [F(1,218 = 34.48, p< 0.001,

ω2 = 0.13]. In addition, the number of ESA switches in the semantic condition was increased

in Experiment 2a compared to Experiment 1 [F(1,218) = 5.07, p< 0.03, ω2 = 0.02], as was the

number of multi-word clusters [F(1,218) = 4.86, p< 0.03, ω2 = 0.02], without significant dif-

ferences in cluster size [F(1,218) = 0.24, NS].

A comparison of correct-word scores across the three test sessions of Experiment 2 (Table 2)

revealed significant differences as a function of semantic [F(2,78) = 10.31, p< 0.0001, ω2 =

0.19] and phonemic [F(2,78) = 40.98, p< 0.0001, ω2 = 0.51] categories. In semantic conditions,

subjects retrieved more words in “body parts” (Experiment 2b) and “foods” (Experiment 2c)

than in “animals” (Experiment 2a). In phonemic conditions, subjects retrieved more words

beginning with the letter “S” (Experiment 2c) than the letter “F” (Experiment 2a), and more

words beginning with the letter “F” (Experiment 2a) than the letter “A” (Experiment 2b).

As in Experiment 1, SOIs were universally higher in semantic than phonemic tests, and

more frequent words were used in phonemic than semantic conditions. The mean number of

syllables was also greater in semantic than phonemic tests with one exception: syllable counts

were increased in letter “A” testing, presumably because few single-syllable words begin with

vowels.

Further analysis of the three semantic conditions showed significant differences in the SOI

[F(2,78) = 5.03, p< 0.01, ω2 = 0.09] (increased in foods), the number of switches [F(2,78) =

6.93, p< 0.003, ω2 = 0.13] (increased in foods), and cluster size [F(2,78) = 4.03, p< 0.03, ω2 =

0.07] (increased in body parts). No significant differences were seen in the number of multi-

word clusters [F(2,78) = 0.19, NS]. There were also significant differences across categories in

the TDP [F(2,78) = 11.93, p< 0.0001, ω2 = 0.20] (reduced in foods).

As shown in Fig 5, strong correlations were evident in correct-word scores across semantic

(top) and phonemic conditions (bottom). Table 5 shows the ICCs for the different metrics.

The highest ICCs were seen for correct-word scores: 0.77 in semantic conditions and 0.91 in

phonemic conditions. A statistical comparison of the two ICCs showed that the correlations

were significantly stronger in phonemic than semantic conditions [z = -4.77, p< 0.0001].

As shown in Fig 6, the SOI also showed good reliability in semantic conditions (ICC =

0.68), with significant reliability seen for both PW-ESA and A-ESA measures (see Table 5).

This suggests that both the strength of semantic priming and the extent of semantic space
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explored were characteristic of individual subjects. In addition, ESA-defined semantic switches

showed an ICC of 0.62 over different categories, while the number of multi-word clusters

(ICC = 0.47) showed lower, but still highly significant, reliability. Finally, syllable counts in

Fig 5. Correct-word scores in different semantic (top) and phonemic (bottom) tests in Experiment 2.

Semantic conditions were “animals”, “parts of the body”, and “foods”. Phonemic conditions were the letters

“F”, “A”, and “S”.

doi:10.1371/journal.pone.0166439.g005
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semantic conditions, the number of words in multi-word clusters, and the percentage of

repeated words showed insignificant ICCs.

In contrast, in phonemic conditions both the percentage of repeated words and word sylla-

ble counts showed significant correlations across different letters. The SOI also showed signifi-

cant correlations, indicating that semantic influences were consistent in different phonemic

tasks. Finally, the TDP showed a significant correlation, indicating a consistent pattern of tem-

poral decline in phonemic word retrieval.

Further comparisons between semantic and phonemic conditions showed strong correla-

tions in overall correct-word scores [r = 0.70, t(38) = 6.04, p < 0.0001] and a significant corre-

lation in word syllable counts [r = 0.41, t(38) = 2.77, p< 0.01], but non-significant correlations

for the other metrics.

Experiment 2: Discussion

The slightly better educated and more computer literate subjects in Experiment 2 retrieved

more correct words in the “animals” and “F” conditions than the subjects in Experiment 1, as

well as more switches and multi-word clusters. However, when correct-word scores were trans-

formed into z-scores by factoring out the influences of education and computer-use, inter-

group differences lost statistical significance. This indicates that the regression functions devel-

oped in Experiment 1 generalized to the younger and somewhat better educated population in

Experiment 2. Other differences in performance scores with Group 1 subjects were not signifi-

cant, with the exception that less typical words were used by the subjects in Experiment 2a.

We found differences in the average number of words retrieved in different semantic and

phonemic categories. Similar differences have been found between semantic categories in pre-

vious studies [59]. In phonemic conditions, the relative ranking of correct-word scores in

“FAS” testing was similar to that reported by Tombaugh et al. [18]. Performance in phonemic

testing may have also been influenced by learning effects, since test order was fixed [96]. How-

ever, only minimal learning effects have been found in semantic fluency tests, even when iden-

tical categories are used for repeated testing [95].

High test-retest reliability of correct-word scores was seen across phonemic tests with dif-

ferent letters, with ICCs (0.91) that significantly exceeded those (0.77) for different semantic

categories. This result is unsurprising, since a subject’s experience with different semantic cate-

gories is likely to vary more substantially than their exposure to different letters. For example,

gender differences in semantic experience likely contribute to male vs. female differences in

correct-word scores for different categories [23, 59, 72]. Test-retest reliability of correct-word

scores in phonemic testing was somewhat higher than that reported in previous studies [53],

Table 5. Test-retest reliability of different measures in semantic and phonemic conditions of experi-

ment 2.

CW %RW LWF Syll PW-ESA A-ESA SOI ESW EMW ECS TDP

Semantic 0.77 -0.02 0.48 0.13 0.56 0.43 0.68 0.62 0.47 -0.27 0.31

Phonemic 0.91 0.50 0.05 0.69 0.31 0.25 0.44 0.54

Mean: S vs P 0.70 0.18 0.08 0.41 -0.02 0.28 0.27 0.05

The top two lines show the intraclass correlation coefficients (ICCs) across the three semantic and three

phonemic tests. Mean S vs. P: the Pearson correlations between average scores in semantic and phonemic

conditions. Different categories and different letters were used in each test. Given the sample size (40),

correlations exceeding 0.32 were significant at the p < 0.05 level, one-tailed. See Tables 2 and 3 for

abbreviations.

doi:10.1371/journal.pone.0166439.t005
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perhaps due to the longer duration of the C-VF test (90 s vs. the typical 60 s test) and the rela-

tively short test-retest intervals (one week).

The reliability of ESA measures of semantic organization. In semantic conditions, the

SOI showed high test-retest reliability (ICC = 0.68), indicating that it is a reliable characteristic

of individual subjects when tested with different semantic categories. Highly significant corre-

lations were also seen for the number of semantic switches and the size of ESA-defined multi-

word clusters. The strong correlation between ESA measures in semantic conditions and

correct-word scores indicates that semantic organization is an important determinant of word

retrieval, regardless of category.

Experiment 3: The Effects of Simulated Malingering

When a patient’s neuropsychological test results fall into the abnormal range, the examiner is

faced with the challenge of determining whether impaired performance is due to organic

causes or suboptimal effort. Previous studies have shown that subjects instructed to malinger

retrieve fewer correct words on VF tests than subjects performing with full effort, with word

scores in simulated malingering conditions falling roughly one standard deviation below full-

effort scores [96]. Other studies have found reductions in correct-word scores of similar mag-

nitude in clinical samples thought to be malingering [97, 98], and noted increases in the inci-

dence of repeated words [97].

Experiment 3: Methods

Subjects and Procedures. The methods were identical to those used in Experiment 1,

except for the instructions given prior to testing. All of the 40 subjects had previously

Fig 6. Semantic organization index (SOI) for different semantic categories. Data from Experiment 2

showing the relationship between SOIs produced in different semantic categories, “animals” (ordinate) and

“foods” and “body parts” (abscissa).

doi:10.1371/journal.pone.0166439.g006
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completed Experiment 2. As in Experiments 1 and 2a, the subjects were tested with the seman-

tic category “animals” and the phonemic category “F”. They had been given written instruc-

tions to perform like a patient with a minor head injury one week prior to Experiment 3. The

additional instructions were as follows: “Listed below you’ll find some of the symptoms com-

mon after minor head injuries. Please study the list below and develop a plan to fake some of

the impairments typical of head injury when you take the next test. Do your best to make your

deficit look realistic. If you make too many obvious mistakes, we’ll know you’re faking! Symp-

tom list: Difficulty concentrating for long periods of time, easily distracted by unimportant

things, headaches and fatigue (feeling “mentally exhausted”), trouble coming up with the right

word, poor memory, difficulty performing complicated tasks, easily tired, repeating things sev-

eral times without realizing it, slow reaction times, trouble focusing on two things at once.”

Statistical analysis. The results were analyzed with Analysis of Variance (ANOVA) using

CLEAVE (www.ebire.org/hcnlab) and Greenhouse-Geisser corrections of degrees of freedom.

Of primary interest were comparisons with Experiment 1 and Experiment 2a results.

Experiment 3: Results

Table 2 includes summary performance statistics from Experiment 3. Fig 1 shows the correct-

word scores from individual simulated malingering subjects (green triangles), and Fig 2 shows

their correct-word z-scores in semantic and phonemic conditions. In comparison with the

subjects in Experiment 1, simulated malingerers showed reduced correct-word z-scores in

semantic [-1.18, F(1,218) = 45.47, p< 0.0001, ω2 = 0.17] and phonemic [-0.46, F(1,218) = 7.00,

p< 0.01, ω2 = 0.03] conditions. There was also an increase in repeated words in both condi-

tions [F(1,218) = 67.32, p< 0.0001, ω2 = 0.24; and F(1,218) = 37.70, p< 0.0001, ω2 = 0.15,

respectively]. Correct-word scores in simulated malingerers were also reduced relative to their

performance in Experiment 2a in both semantic [F(1,39) = 61.35, p< 0.0001, partial ω2 =

0.61] and phonemic [F(1,39) = 13.19, p< 0.001, partial ω2 = 0.24] conditions. In semantic con-

ditions, 38% of simulated malingerers showed abnormal (p< 0.05) correct-word z-scores,

while 15% had abnormal results in phonemic conditions.

Fig 3 shows the rate of word production in both conditions for the subjects in Experiment 3

(green lines). In semantic conditions, the word retrieval rate declined in parallel with that of

the subjects in Experiment 1, but with reduced retrieval during each 15 s interval. In contrast,

retrieval rates in phonemic conditions were similar in full-effort and malingering conditions,

except for the initial 15 s period.

In the semantic condition the number of ESA-defined switches was significantly reduced in

comparison with Experiment 1 [F(1,218) = 9.50, p< 0.005, ω2 = 0.04] and Experiment 2a [F

(1,39) = 19.47, p< 0.0001, partial ω2 = 0.32], as was the number of multi-word clusters [F

(1,218) = 18.48, p< 0.0001, ω2 = 0.07; F(1,39) = 34.48, p< 0.0001, partial ω2 = 0.46], without a

significant alteration in multi-word cluster size.

Fig 4 shows the relationship between correct-word z-scores and the SOI in simulated

malingerers (green triangles) in semantic conditions. Surprisingly, there was no significant

reduction in the SOI in simulated malingerers compared to Experiment 1 subjects [F(1,218) =

0.13, NS], although there was a small reduction in comparison to their performance in Experi-

ment 2a [F(1,39) = 5.55, p< 0.03, partial ω2 = 0.10]. Typicality showed a trend towards an

increase versus Experiment 1 [F(1,218) = 3.48, p < 0.07], and was significantly increased rela-

tive to Experiment 2a [F(1,39) = 17.22, p< 0.0002, partial ω2 = 0.29]. Word frequencies did

not differ from Experiment 1 [F(1,218) = 1.08, NS], but were reduced with respect to Experi-

ment 2a [F(1,39) = 14.22, p< 0.0005, partial ω2 = 0.25], while syllable counts showed no signif-

icant overall change with respect to either control condition.
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Table 6 shows the results from the nine control subjects (top) and 15 malingering subjects

(middle) with abnormal correct-word z-scores in semantic conditions. Z-score cutoffs were

relatively ineffective in distinguishing abnormal malingerers from control subjects with abnor-

mal scores. For example, a z-score cutoff of -2.0 provided 66% sensitivity and 40% specificity, a

cutoff of -2.5 provided 20% sensitivity and 88% specificity, and a cutoff of -3.0 provided 7%

sensitivity and 100% specificity.

We therefore investigated whether simulated malingerers with abnormal semantic z-scores

could be distinguished from control subjects with abnormal z-scores based on the analysis of lexi-

cal, temporal, and ESA measures. Table 6 shows the subjects falling in the p<0.05 (shaded) and

p<0.10 portions of the normative data distribution for measures of word syllable count, word fre-

quency, word typicality, TDP, and the percentage of repeated words. It also shows subjects whose

SOIs fell within the normal range (i.e., less than one standard deviation below the mean).

Simulated malingerers with abnormal scores used short, frequent, and typical words so that

ancillary lexical measures showed moderate to good sensitivity and specificity in classifying sub-

jects with abnormal scores into simulated malingering and control groups. For example, 73% of

abnormal malingerers had mean syllable counts in the bottom 10% of the control distribution, a

Table 6. Malingering indices in subjects with abnormal semantic fluency z- scores.

Subject Z score Syll LWF Typ TDP % Repeat N-SOI MI Total

Sub1 -2.50 0.05 0.05 0.05 3

Sub2 -2.48 0.05 0.05 0.05 0.05 2

Sub3 -2.17 0.05 0.05 0

Sub4 -2.11 0

Sub5 -2.11 0.05 0.05 0.05 1

Sub6 -1.99 0.05 * 0

Sub7 -1.94 0.05 -1

Sub8 -1.75 0.05 0.05 0.05 1

Sub9 -1.72 0.10 0.10 0

mal1 -3.02 0.05 0.05 0.05 3

mal2 -2.96 0.05 0.05 0.05 0.05 4

mal3 -2.53 0.05 0.05 0.05 0.05 4

mal4 -2.21 0.10 0.05 0.05 0.10 4

mal5 -2.17 0.05 0.05 0.05 0.10 * 5

mal6 -2.14 0.05 0.05 0.10 0.10 2

mal7 -2.13 0.05 0.05 0.05 0.10 4

mal8 -2.04 0.05 1

mal9 -2.00 0.05 0.05 0.05 0.10 * 5

mal10 -1.93 0.05 0.05 0.05 0.05 4

mal11 -1.92 0.05 0.05 0.05 * 4

mal12 -1.89 0.05 0.05 0.10 0.05 * 5

mal13 -1.89 0.05 0.05 0.10 0.05 4

mal14 -1.89 0.05 0.10 * 1

mal15 -1.69 0.05 0.05 0.05 * 4

mTBI -2.23 0.05 0.05 0.10 1

sTBI -2.47 0.05 0.05 0.05 1

Data are from subjects with abnormal z-scores including 9 control subjects, 15 subjects in simulated

malingering conditions, and two patients with TBI. N-SOI: SOI within one standard deviation of the mean

from Experiment 1. MI total = sum of individual signs of malingering. See Table 2 for other abbreviations.

doi:10.1371/journal.pone.0166439.t006
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pattern that was seen in only 22% of the abnormal controls (i.e., 73% sensitivity and 78% speci-

ficity). Similarly, abnormally low word frequencies showed a sensitivity of 93% and a specificity

of 67%, while typicality showed a sensitivity of 80% and specificity of 56%. An abnormally high

percentage of repeated words provided 87% sensitivity and 67% specificity. In contrast, abnor-

mally steep declines in the rate of word production (p< 0.10) were mainly seen in abnormal

controls (78% sensitivity and 87% specificity), while SOIs within the normal range were more fre-

quent among simulated malingerers (40% sensitivity and 89% specificity). Taking all six measures

into account, malingering subjects with abnormal scores showed an average of 3.6 (sd = 1.3) signs

of malingering, whereas abnormal controls showed only 0.7 (sd = 1.2) signs. A cutoff of three (of

six) signs of malingering resulted in a sensitivity of 80% and a specificity of 89%.

Experiment 3: Discussion

As in previous studies of simulated malingerers [96] and patients presumed to be malingering

[97, 98], we found significant reductions in correct-word scores among simulated malingerers.

However, z-score cutoffs were relatively ineffective at classifying subjects with abnormal per-

formance into malingering and non-malingering groups. This insensitivity reflects the high

coefficient of variation of correct-word scores in normative studies (see Table 1). In many

neuropsychological tests, z-score cutoffs below -3.0 are needed to avoid falsely categorizing

patients with abnormal performance as malingerers [75, 76]. However, to have a correct-word

z-score of -3.0 in the current experiment, malingerers would need to retrieve fewer than 7.7

words in semantic conditions and only one word in phonemic conditions.

However, six other measures showed potential utility in distinguishing abnormal controls

from abnormal malingerers, providing an aggregate sensitivity of 80% and a specificity of 89%.

Virtually all malingerers adopted a lexical strategy: they used monosyllabic, frequent, and typical

words which they often repeated. However, unlike abnormal control subjects, simulated malin-

gerers with abnormal scores did not show abnormal declines in the rate of word production, and

often had SOIs within the normal range. Thus, while malingerers produced abnormal correct-

word scores, they did so in a manner that failed to match the characteristics of non-malingering

subjects with abnormal scores. In other neuropsychological tests, ancillary performance measures

have shown utility in distinguishing simulated malingerers and controls with abnormal scores

[75, 78, 81, 99, 100]. Thus, while malingerers may produce criterion scores in the abnormal

range they do so in different manner from subjects with intrinsically limited processing abilities.

Limitations. The subjects in Experiment 3 were familiar with C-VF test procedures,

which may have influenced their performance and strategies. Further testing with naïve sub-

jects in simulated malingering conditions and patients suspected of malingering is needed to

validate these findings and determine if the proposed metrics provide similar sensitivity and

specificity in identifying malingering subjects in different populations.

Although the malingering indices were effective in discriminating control subjects with

abnormal performance from malingering subjects with abnormal performance, the false posi-

tive rate would be expected to increase significantly in more severely impaired clinical popula-

tions. For example, patients with AD retrieve relatively fewer items in the first half than the

second half of the test [35]. Therefore, they would be expected to show reduced TDPs, similar

to those of malingering subjects. Similarly, AD patients use more frequent and typical words

[29] and show an increased incidence of repeated words [101].

Experiment 4: The Effects of Traumatic Brain Injury

Verbal fluency tests are commonly used to assess executive and language functions in patients

who have suffered traumatic brain injury (TBI). While patients with mild TBI (mTBI) show
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VF deficits in the acute phase [102], they typically perform within the normal range when

tested more than six months post-injury [5, 103–105]. However, persistent deficits have been

reported in subgroups of Veteran mTBI patients who fail to return to active duty [106], who

have persistent memory problems [107], or who have suffered repeated blast exposure [108].

Reductions in the number of semantic switches [107] and semantic cluster size [46] have also

been found in some studies. Verbal fluency deficits may also be more prominent in mTBI

patients with a concurrent diagnosis of post-traumatic stress disorder (PTSD) [109–111].

Patients with severe TBI (sTBI) often show deficits in VF testing. In their meta-analysis,

Henry and Crawford [5] found that patients with sTBI were comparably impaired on semantic

and phonemic fluency tasks with an effect size (r = 0.46) similar to that seen in schizophrenia

(r = 0.46) [15], but less than that seen in dementia (r = 0.55 for phonemic fluency and r = 0.72

for semantic fluency) [16], or following focal lesions of the left frontal or left temporal lobes

(r = 0.58) [11]. More recent studies have also found reduced correct-word scores in sTBI

patients [37, 112, 113], including one study that found greater reductions early in the test

period [37]. Deficits increase in parallel with increasing TBI severity [46, 47], and include

impairments in semantic organization [113].

Experiment 4: Methods

Subjects and Procedures. The methods were identical to those used in Experiment 1.

Twenty-five Veterans with a history of TBI were recruited from the Veterans Affairs Northern

California Health Care System patient population. The patients included 24 males and one

female between the ages of 20 and 61 years (mean age = 35.5 years), with an average education

of 13.6 years. All patients had suffered one or more head injuries with a transient loss or alter-

ation of consciousness, most related to blast exposure, and had received diagnoses after exten-

sive clinical evaluations. All patients were tested at least one year post-injury. Twenty-one of

the patients had suffered one or more combat-related incidents, with a loss of consciousness of

less than 30 minutes, no hospitalization, and no evidence of brain lesions on clinical MRI

scans. These patients were categorized as mTBI. The remaining four patients had suffered

more severe accidents with hospitalization, coma duration exceeding eight hours, and post-

traumatic amnesia exceeding 72 hours. These patients were categorized as sTBI. All patients

were informed that the study was for research purposes only and that the results would not be

included in their official medical records. Evidence of PTSD, as reflected in elevated scores

(> 50) on the Posttraumatic Stress Disorder Checklist (PCL), was evident in the majority of

the TBI sample (see S1 Table), producing highly significant differences in PCL scores between

the TBI sample (mean 51.8, sd = 12.9) and the control subjects (mean = 32.0, sd = 12.8) in

Experiment 1 [F(1,197) = 50.15, p< 0.0001, ω2 = 0.20] and Experiment 2a [F(1,62) = 57.48, p<

0.0001, ω2 = 0.47].

Statistical analysis. The results were analyzed with ANOVA, as in Experiment 1, with

separate comparisons of mTBI and sTBI groups with the control subjects in Experiment 1 and

Experiment 2a.

Experiment 4: Results

Table 2 includes summary performance statistics for the mTBI and sTBI patients, and Fig 1

includes the correct-word scores (mTBI = solid red circles, sTBI = cross-hatched red circles).

Fig 2 shows the correct-word z-scores of individual TBI patients in semantic and phonemic

conditions. The majority of mTBI patients had correct-word z-scores within the normal range

in both conditions (semantic mean = 0.20, phonemic mean = -0.15). The statistical analysis of

correct-word z-scores with Group (mTBI, control) and Test-type (semantic, phonemic) as
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factors showed no significant overall differences between the mTBI patients and the control

subjects in either Experiment 1 or Experiment 2a. Only one mTBI patient produced an abnor-

mal (p<0.05) correct-word z-score in semantic testing without signs of malingering (see

Table 6), while a separate mTBI patient showed abnormalities in phonemic testing.

Fig 3 shows the rate of word production in both conditions for mTBI patients (solid red

lines): in both conditions, the decline in retrieval resembled that seen in control populations.

In semantic conditions, the TDP was not significantly different from that of Experiment 1 sub-

jects, but was marginally increased in comparison with subjects in Experiment 2a [F(1,42) =

4.49, p< 0.05, ω2 = 0.06].

Fig 4 shows the relationship between semantic z-scores and SOI scores. There were no sig-

nificant differences between mTBI patients and the subjects in Experiment 1 or Experiment 2a

in the SOI, word frequency, percentage of repeated words, or word syllable counts. The mTBI

patients showed reduced word typicality in comparison with the subjects in Experiment 1 [F

(1,199) = 29.37, p< 0.001, ω2 = 0.12], but no significant difference with the subjects in Experi-

ment 2a. The number of semantic switches did not differ from those of Experiment 1 subjects,

whether measured with ESA or Troyer methods, although the number of semantic switches

was slightly reduced in comparison with the subjects in Experiment 2a [ESA: F(1,59) = 4.96,

p< 0.03, ω2 = 0.06; Troyer: F(1,59) = 10.40, p< 0.005, ω2 = 0.14]. There were no changes in

the number of ESA-defined multi-word clusters or cluster size in comparison with either

Experiment 1 or Experiment 2a. Self-reported PTSD severity did not influence performance:

We found no significant correlations between PCL scores and the correct-word scores for

either mTBI patients or Experiment 1 controls in either the semantic or phonemic tests.

Unlike mTBI patients, sTBI patients showed significant correct-word z-score reductions

(semantic = -1.01, phonemic = -0.74) with respect to the control subjects in Experiment 1

[F(1,182) = 4.52, p<0.05, ω2 = 0.02] and Experiment 2a [F(1,42) = 6.08, p< 0.02, ω2 = 0.11],

without significant Group x Test-type interactions. Of the four sTBI patients, one produced

significant abnormalities on semantic testing and borderline (p< 0.07) abnormalities in pho-

nemic testing, two others showed smaller performance impairments on both tests, and one

patient showed average performance.

The number of switches during semantic testing was reduced in sTBI patients compared to

the subjects in Experiment 1 [ESA: F(1,182) = 6.33, p<0.02, ω2 = 0.03; Troyer F(1,182) = 3.42,

p<0.07] and Experiment 2a [ESA: F(1,42) = 10.50, p< 0.005, ω2 = 0.18; Troyer: F(1,42) =

7.30, p< 0.02, ω2 = 0.13]. The number of ESA-defined multi-word clusters did not differ from

Experiment 1, but was reduced with respect to Experiment 2a [F(1,42) = 4.85, p< 0.05, ω2 =

0.08]. Typicality showed a similar pattern [vs. Experiment 1 subjects, F(1,182) = 1.68, NS; vs.

Experiment 2a subjects, F(1,42) = 5.90, p< 0.03, ω2 = 0.10]. The abnormalities in sTBI patients

occurred without significant alterations in the size of ESA-defined multi-word clusters in com-

parison with either control group. No group differences were seen in the SOI, word frequency,

word syllable count, percentage of repeated words, or the TDP. The TBI patients with abnor-

mal z-scores in semantic testing did not show signs of malingering (see Table 6).

Experiment 4: Discussion

We found no systematic group differences in correct-word z-scores in military veterans with

mTBI when compared to the control subjects of Experiment 1 or Experiment 2a. Nor did the

mTBI patients show consistent alterations in the number of semantic switches, the number of

multi-word clusters, multi-word cluster size, the SOI, the percentage of repeated words, word

frequency, or word length. This is consistent with the results of the large scale study of Vander-

ploeg et al. (2005) [104], who found similar VF performance in 254 Veteran patients with
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mTBI and 3,057 control veterans. Like many of the Veteran patients tested by Vanderploeg

et al. (2005), a high percentage of Veteran patients in Experiment 4 had co-morbid PTSD and

elevated PCL scores. However, we found no evidence that elevated PCL scores reduced cor-

rect-word scores in either the control subjects or the mTBI patients.

In contrast, the sTBI patients showed deficits in both semantic and phonemic tests. In

semantic testing, the number of switches was significantly reduced, with abnormalities seen in

75% of the sTBI group. Similar deficits in semantic switching have been reported in previous

studies of patients with moderate and severe TBI [46, 47, 113]. The pattern of results is similar

to those observed in patients with frontal lobe lesions [40], and is consistent with quantitative

neuroimaging studies that revealed extensive frontal lobe damage in the most impaired sTBI

patient in Experiment 4 [114]. We also found corresponding decreases in the number, but not

the size, of multi-word clusters, and increases in word typicality without significant alterations

in the SOI, the percentage of repeated words, word frequency, word length, or the TDP.

Limitations. These results should be considered preliminary, given the small sample size

of the TBI patient populations. Additional studies will be needed to investigate the sensitivity

of different C-VF measures in other clinical populations.

General Discussion

Verbal fluency tests are among the fastest and easiest neuropsychological tests to administer

and score. Testing usually requires 60 to 90 s per category, and tallying the number of correct

words and repetitions can be performed rapidly. Evaluating correct-word scores relative to

tabulated data is also straightforward, although test interpretation may differ somewhat

depending on the normative data used for comparison.

The C-VF is as easy to administer than paper-and-pencil VF tests, and offers several addi-

tional improvements: (1) A permanent record of test performance is stored digitally; (2) Tim-

ing is recorded automatically so that words can be accurately assigned to 15 second intervals;

(3) Scoring of correct and repeated words is performed automatically; and (4) Z-scores based

on an individual’s age, education, and computer-use are produced that are somewhat more

precise than comparisons with tabulated correct-word scores based on subjects spanning a

range of ages and educational levels.

However, the main advantage of the C-VF is the comprehensive set of lexical, temporal,

and semantic measures that it provides. These measures include word frequency, syllable

count, typicality, and the TDP. In addition, the application of Explicit Semantic Analysis [57]

makes it possible to objectively analyze the semantic relationships between words in any

semantic category, quantify semantic organization with the SOI, and measure semantic

switches, multi-word clusters, and multi-word cluster size. The C-VF Python program also

performs switch and cluster analysis in the “animals” category using predefined Troyer seman-

tic subcategories [39].

From the perspective of the subject, the only difference between the C-VF and a standard

VF assessment is test duration (90 vs 60 seconds). Correct-word scores over the first 60 s of the

C-VF were similar to the average scores obtained in large-scale VF studies. We also found sim-

ilar demographic correlates: age and sex did not have significant influences on correct-word

scores, while education showed a correlation similar to that observed in previous studies. An

additional factor, daily computer-use, also correlated significantly with performance.

Correct-word z-scores, created after factoring out the influence of education and com-

puter-use on performance, generalized across control populations in Experiment 1 and Exper-

iment 2a. The test-retest reliability of the C-VF correct-word scores equaled or exceeded that

of manually scored VF tests. Repeat testing in Experiment 2 using different semantic and
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phonemic categories showed high intraclass correlation coefficients for measures of word fre-

quency, syllable count, and typicality.

ESA measures of semantic organization

The semantic organization index (SOI), the ratio of semantic association strength between suc-

cessive words (PW-ESA) relative to the average association strength among all words (A-ESA),

was strongly associated with correct-word scores. Subjects with greater correct-word scores

produced clusters of highly related words (high PW-ESA) and, above all, produced words in

more semantically distinct clusters (low A-ESA).

The SOI is an appealing measure of semantic organization because it less computationally

confounded with correct-word scores than measures of semantic switches and multi-word

clusters; e.g., a high SOI can occur with low correct-word scores, but high semantic switch and

multiword cluster scores will be obligatorily associated with high correct-word scores. The SOI

showed good test-retest reliability across different word lists in Experiment 2, suggesting that

it is a stable characteristic of individual subjects Finally, in phonemic fluency tests, the SOI

revealed that the semantic relationships between words influenced the order of word recall,

consistent with previous studies showing semantic influences during phonemic fluency condi-

tions [26].

Measures of semantic switches and clusters

In semantic tests of the “animals” category, ESA measures of semantic switches and clusters

correlated strongly with corresponding measures obtained with the method of Troyer et al.

(1997) [39]. However, unlike subcategory-based methods, ESA measures of switches and clus-

ters can be automatically analyzed for novel categories. In Experiment 2, we were able to estab-

lish that the number of ESA-defined switches and clusters showed significant correlations

across different semantic categories including two that lacked pre-defined semantic subcatego-

ries. Moreover, ESA can be applied to categories of different size. For example, ESA will reveal

the semantic organization of report in subjects who names animals from a single Troyer sub-

category (e.g., “North American Animals”)

Clinical applications

The utility of the C-VF performance measures was shown in Experiment 3, where 38% of sim-

ulated malingerers showed abnormal correct-word z-scores. Simulated malingerers with

abnormal scores were not well-distinguished from control subjects with abnormal scores

based on correct-word z-score cutoffs alone. However, they could be distinguished with 80%

sensitivity and 89% specificity based on a combination of other measures including word fre-

quency, syllable count, typicality, the TDP, semantic organization, and the percentage of

repeated words.

In Experiment 4, patients with mild TBI performed within the normal range on almost all

measures. However, patients with sTBI showed significant abnormalities in correct-word z-

scores and significant reductions in the number of semantic switches. Further investigation is

needed to evaluate C-VF measures in clinical disorders such as mild cognitive impairment,

Alzheimer’s disease, and schizophrenia.

Future directions

We have adapted the C-VF to a Microsoft Surface Pro to enhance portability and ease of

administration. We have also added optional digital recording of the subject’s spoken
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responses and voice trigger detection to improve response-timing measures. We plan to gather

additional control data and are looking forward to assisting interested investigators in evaluat-

ing C-VF sensitivity in different clinical and control populations.

Conclusion

Computerized transcription and analysis of responses during verbal fluency testing facilitates

test administration, speeds scoring, and provides additional objective and reliable measures of

lexical, temporal, and semantic processing in normal subjects, simulated malingerers, and

patients with traumatic brain injury.

Supporting Information

S1 Fig. Correct word scores in semantic (“animals”) and phonemic (letter “F”) conditions

as a function of years of education. The data are from Experiment 1, Experiment 2a, Experi-

ment 3 (simulated malingering) and Experiment 4 (mild TBI = mTBI, filled red circles; severe

TBI = sTBI, cross-hatched red circles). The regression slope is from Experiment 1.

(TIF)

S2 Fig. Correct word scores in semantic (“animals”) and phonemic (letter “F”) conditions

as a function of daily hours of computer-use. The data are from Experiment 1, Experiment

2a, Experiment 3 (simulated malingering) and Experiment 4 (mild TBI = mTBI, filled red cir-

cles; severe TBI = sTBI, cross-hatched red circles). The regression slope is from Experiment 1.

(TIF)

S1 Table. PATIENT CHARACTERISTICS. Shaded cells show patients with severe TBI.

Edu = years of education.C-use: computer-use. PCL = scores on post-traumatic stress disorder

checklist. CW-S = correct words in semantic test;CW-P = correct words in phonetic test.

(DOCX)

Acknowledgments

We would like to thank Ben Edwards, Oren Poliva, Masood Younus, Nabeel Rahman, and

Kerry Hubel who gathered data used in this report, and Robert Hink who developed the

MySQL database.

Author Contributions

Conceptualization: DLW TJH EWY.

Data curation: DLW.

Formal analysis: DLW TJH EWY.

Funding acquisition: DLW.

Investigation: JW.

Methodology: DLW TJH EWY.

Project administration: DLW.

Resources: DLW TJH.

Software: EWY TJH DLW.

Supervision: DLW.

Computerized Measurement of Verbal Fluency

PLOS ONE | DOI:10.1371/journal.pone.0166439 December 9, 2016 31 / 37

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166439.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166439.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166439.s003


Validation: DLW.

Visualization: DLW.

Writing – original draft: DLW JW.

Writing – review & editing: DLW JW EWY TJH.

References
1. Benton AL, Hamsher SK, Sivan AB. Multilingual aplasia examination ( 2nd ed.). Iowa City, IA: AJA

Associates; 1983.

2. Ober BA, Dronkers NF, Koss E, Delis DC, Friedland RP. Retrieval from semantic memory in Alzhei-

mer-type dementia. J Clin Exp Neuropsychol. 1986; 8(1):75–92. Epub 1986/01/01. doi: 10.1080/

01688638608401298 PMID: 3944246

3. Butters N, Sax D, Montgomery K, Tarlow S. Comparison of the neuropsychological deficits associated

with early and advanced Huntington’s disease. Arch Neurol. 1978; 35(9):585–9. Epub 1978/09/01.

PMID: 150836

4. Andreou G, Trott K. Verbal fluency in adults diagnosed with attention-deficit hyperactivity disorder

(ADHD) in childhood. Attention deficit and hyperactivity disorders. 2013; 5(4):343–51. Epub 2013/06/

12. doi: 10.1007/s12402-013-0112-z PMID: 23749309

5. Henry JD, Crawford JR. A meta-analytic review of verbal fluency performance in patients with trau-

matic brain injury. Neuropsychology. 2004; 18(4):621–8. Epub 2004/10/28. doi: 10.1037/0894-4105.

18.4.621 PMID: 15506829

6. Kertesz A. Western Aphasia Battery. San Antonio, TX: The Psychological Corporation.; 1982.

7. Goodglass H, Kaplan E. The assessment of aphasia and related disorders. 2nd ed. Philadelphia:

Lea & Febiger; 1983.

8. Cohen MJ, Morgan AM, Vaughn M, Riccio CA, Hall J. Verbal fluency in children: developmental issues

and differential validity in distinguishing children with attention-deficit hyperactivity disorder and two

subtypes of dyslexia. Arch Clin Neuropsychol. 1999; 14(5):433–43. Epub 2003/11/01. PMID:

14590585

9. Federmeier KD, Kutas M, Schul R. Age-related and individual differences in the use of prediction dur-

ing language comprehension. Brain Lang. 2010; 115(3):149–61. Epub 2010/08/24. PubMed Central

PMCID: PMC2975864. doi: 10.1016/j.bandl.2010.07.006 PMID: 20728207

10. Fitzpatrick S, Gilbert S, Serpell L. Systematic review: are overweight and obese individuals impaired

on behavioural tasks of executive functioning? Neuropsychol Rev. 2013; 23(2):138–56. Epub 2013/

02/06. doi: 10.1007/s11065-013-9224-7 PMID: 23381140

11. Henry JD, Crawford JR. A meta-analytic review of verbal fluency performance following focal cortical

lesions. Neuropsychology. 2004; 18(2):284–95. doi: 10.1037/0894-4105.18.2.284 PMID: 15099151

12. Baldo JV, Shimamura AP, Delis DC, Kramer J, Kaplan E. Verbal and design fluency in patients with

frontal lobe lesions. J Int Neuropsychol Soc. 2001; 7(5):586–96. Epub 2001/07/19. PMID: 11459110

13. Borkowski JG, Benton AL, Spreen O. Word fluency and brain damage. Neuropsychologia. 1967; 5

(2):135–40.

14. Henry JD, Crawford JR. Verbal fluency deficits in Parkinson’s disease: a meta-analysis. J Int Neurop-

sychol Soc. 2004; 10(4):608–22. doi: 10.1017/S1355617704104141 PMID: 15327739

15. Henry JD, Crawford JR. A meta-analytic review of verbal fluency deficits in schizophrenia relative to

other neurocognitive deficits. Cognitive neuropsychiatry. 2005; 10(1):1–33. doi: 10.1080/

13546800344000309 PMID: 16571449

16. Henry JD, Crawford JR, Phillips LH. Verbal fluency performance in dementia of the Alzheimer’s type: a

meta-analysis. Neuropsychologia. 2004; 42(9):1212–22. doi: 10.1016/j.neuropsychologia.2004.02.

001 PMID: 15178173

17. Wecker NS, Kramer JH, Hallam BJ, Delis DC. Mental flexibility: age effects on switching. Neuropsy-

chology. 2005; 19(3):345–52. Epub 2005/05/25. doi: 10.1037/0894-4105.19.3.345 PMID: 15910120

18. Tombaugh TN, Kozak J, Rees L. Normative data stratified by age and education for two measures of

verbal fluency: FAS and animal naming. Arch Clin Neuropsychol. 1999; 14(2):167–77. Epub 2003/11/

01. PMID: 14590600

19. Gladsjo JA, Schuman CC, Evans JD, Peavy GM, Miller SW, Heaton RK. Norms for letter and category

fluency: demographic corrections for age, education, and ethnicity. Assessment. 1999; 6(2):147–78.

Epub 1999/05/21. PMID: 10335019

Computerized Measurement of Verbal Fluency

PLOS ONE | DOI:10.1371/journal.pone.0166439 December 9, 2016 32 / 37

http://dx.doi.org/10.1080/01688638608401298
http://dx.doi.org/10.1080/01688638608401298
http://www.ncbi.nlm.nih.gov/pubmed/3944246
http://www.ncbi.nlm.nih.gov/pubmed/150836
http://dx.doi.org/10.1007/s12402-013-0112-z
http://www.ncbi.nlm.nih.gov/pubmed/23749309
http://dx.doi.org/10.1037/0894-4105.18.4.621
http://dx.doi.org/10.1037/0894-4105.18.4.621
http://www.ncbi.nlm.nih.gov/pubmed/15506829
http://www.ncbi.nlm.nih.gov/pubmed/14590585
http://dx.doi.org/10.1016/j.bandl.2010.07.006
http://www.ncbi.nlm.nih.gov/pubmed/20728207
http://dx.doi.org/10.1007/s11065-013-9224-7
http://www.ncbi.nlm.nih.gov/pubmed/23381140
http://dx.doi.org/10.1037/0894-4105.18.2.284
http://www.ncbi.nlm.nih.gov/pubmed/15099151
http://www.ncbi.nlm.nih.gov/pubmed/11459110
http://dx.doi.org/10.1017/S1355617704104141
http://www.ncbi.nlm.nih.gov/pubmed/15327739
http://dx.doi.org/10.1080/13546800344000309
http://dx.doi.org/10.1080/13546800344000309
http://www.ncbi.nlm.nih.gov/pubmed/16571449
http://dx.doi.org/10.1016/j.neuropsychologia.2004.02.001
http://dx.doi.org/10.1016/j.neuropsychologia.2004.02.001
http://www.ncbi.nlm.nih.gov/pubmed/15178173
http://dx.doi.org/10.1037/0894-4105.19.3.345
http://www.ncbi.nlm.nih.gov/pubmed/15910120
http://www.ncbi.nlm.nih.gov/pubmed/14590600
http://www.ncbi.nlm.nih.gov/pubmed/10335019


20. Then FS, Luck T, Luppa M, Arelin K, Schroeter ML, Engel C, et al. Association between mental

demands at work and cognitive functioning in the general population—results of the health study of the

Leipzig research center for civilization diseases (LIFE). Journal of occupational medicine and toxicol-

ogy. 2014; 9:23. Epub 2014/06/11. PubMed Central PMCID: PMC4049483. doi: 10.1186/1745-6673-

9-23 PMID: 24914403

21. Ostrosky-Solis F, Gutierrez AL, Flores MR, Ardila A. Same or different? Semantic verbal fluency

across Spanish-speakers from different countries. Arch Clin Neuropsychol. 2007; 22(3):367–77. Epub

2007/02/14. doi: 10.1016/j.acn.2007.01.011 PMID: 17296282

22. Benito-Cuadrado MM, Esteba-Castillo S, Bohm P, Cejudo-Bolivar J, Pena-Casanova J. Semantic ver-

bal fluency of animals: a normative and predictive study in a Spanish population. J Clin Exp Neuropsy-

chol. 2002; 24(8):1117–22. Epub 2003/03/26. doi: 10.1076/jcen.24.8.1117.8376 PMID: 12650236

23. Capitani E, Laiacona M, Barbarotto R. Gender affects word retrieval of certain categories in semantic

fluency tasks. Cortex. 1999; 35(2):273–8. PMID: 10369099

24. Cavaco S, Goncalves A, Pinto C, Almeida E, Gomes F, Moreira I, et al. Semantic fluency and phone-

mic fluency: regression-based norms for the Portuguese population. Arch Clin Neuropsychol. 2013;

28(3):262–71. Epub 2013/01/24. doi: 10.1093/arclin/act001 PMID: 23341434

25. Crowe SF. Decrease in performance on the verbal fluency test as a function of time: evaluation in a

young healthy sample. J Clin Exp Neuropsychol. 1998; 20(3):391–401. doi: 10.1076/jcen.20.3.391.

810 PMID: 9845165

26. Vonberg I, Ehlen F, Fromm O, Klostermann F. The absoluteness of semantic processing: lessons

from the analysis of temporal clusters in phonemic verbal fluency. PLoS One. 2014; 9(12):e115846.

PubMed Central PMCID: PMC4275266. doi: 10.1371/journal.pone.0115846 PMID: 25535970

27. Connelly V, Dockrell JE, Barnett J. The slow handwriting of undergraduate students constrains overall

performance in exam essays. Educational Psychology. 2005; 25(1):99–107.

28. Juhasz BJ, Chambers D, Shesler LW, Haber A, Kurtz MM. Evaluating lexical characteristics of verbal

fluency output in schizophrenia. Psychiatry Res. 2012; 200(2–3):177–83. Epub 2012/07/20. PubMed

Central PMCID: PMC3513518. doi: 10.1016/j.psychres.2012.06.035 PMID: 22809852

29. Vita MG, Marra C, Spinelli P, Caprara A, Scaricamazza E, Castelli D, et al. Typicality of words pro-

duced on a semantic fluency task in amnesic mild cognitive impairment: linguistic analysis and risk of

conversion to dementia. J Alzheimers Dis. 2014; 42(4):1171–8. Epub 2014/07/16. doi: 10.3233/JAD-

140570 PMID: 25024315

30. Bousfield WA, Sedgewick CHW. An Analysis of Sequences of Restricted Associative Responses. The

Journal of General Psychology. 1944; 30(2):149–65.

31. Rohrer D, Wixted JT, Salmon DP, Butters N. Retrieval from semantic memory and its implications for

Alzheimer’s disease. J Exp Psychol Learn Mem Cogn. 1995; 21(5):1127–39. PMID: 8744958

32. Wixted JT, Rohrer D. Analyzing the dynamics of free recall: An integrative review of the empirical liter-

ature. Psychon Bull Rev. 1994; 1(1):89–106. Epub 1994/03/01. doi: 10.3758/BF03200763 PMID:

24203416

33. Gruenewald PJ, Lockhead GR. The free recall of category examples. Journal of Experimental Psy-

chology: Human Learning and Memory. 1980; 6(3): 225–40.

34. Fernaeus SE, Almkvist O. Word production: dissociation of two retrieval modes of semantic memory

across time. J Clin Exp Neuropsychol. 1998; 20(2):137–43. Epub 1998/10/20. doi: 10.1076/jcen.20.2.

137.1170 PMID: 9777467

35. Fernaeus SE, Ostberg P, Hellstrom A, Wahlund LO. Cut the coda: early fluency intervals predict diag-

noses. Cortex. 2008; 44(2):161–9. Epub 2008/04/05. doi: 10.1016/j.cortex.2006.04.002 PMID:

18387545

36. Fernaeus SE, Almkvist O, Bronge L, Ostberg P, Hellstrom A, Winblad B, et al. White matter lesions

impair initiation of FAS flow. Dement Geriatr Cogn Disord. 2001; 12(1):52–6. PMID: 11125241

37. Bittner RM, Crowe SF. The relationship between naming difficulty and FAS performance following

traumatic brain injury. Brain Inj. 2006; 20(9):971–80. doi: 10.1080/02699050600909763 PMID:

17062428

38. Takacs A, Kobor A, Tarnok Z, Csepe V. Verbal fluency in children with ADHD: strategy using and tem-

poral properties. Child Neuropsychol. 2014; 20(4):415–29. doi: 10.1080/09297049.2013.799645

PMID: 23731209

39. Troyer AK, Moscovitch M, Winocur G. Clustering and switching as two components of verbal fluency:

evidence from younger and older healthy adults. Neuropsychology. 1997; 11(1):138–46. PMID:

9055277

Computerized Measurement of Verbal Fluency

PLOS ONE | DOI:10.1371/journal.pone.0166439 December 9, 2016 33 / 37

http://dx.doi.org/10.1186/1745-6673-9-23
http://dx.doi.org/10.1186/1745-6673-9-23
http://www.ncbi.nlm.nih.gov/pubmed/24914403
http://dx.doi.org/10.1016/j.acn.2007.01.011
http://www.ncbi.nlm.nih.gov/pubmed/17296282
http://dx.doi.org/10.1076/jcen.24.8.1117.8376
http://www.ncbi.nlm.nih.gov/pubmed/12650236
http://www.ncbi.nlm.nih.gov/pubmed/10369099
http://dx.doi.org/10.1093/arclin/act001
http://www.ncbi.nlm.nih.gov/pubmed/23341434
http://dx.doi.org/10.1076/jcen.20.3.391.810
http://dx.doi.org/10.1076/jcen.20.3.391.810
http://www.ncbi.nlm.nih.gov/pubmed/9845165
http://dx.doi.org/10.1371/journal.pone.0115846
http://www.ncbi.nlm.nih.gov/pubmed/25535970
http://dx.doi.org/10.1016/j.psychres.2012.06.035
http://www.ncbi.nlm.nih.gov/pubmed/22809852
http://dx.doi.org/10.3233/JAD-140570
http://dx.doi.org/10.3233/JAD-140570
http://www.ncbi.nlm.nih.gov/pubmed/25024315
http://www.ncbi.nlm.nih.gov/pubmed/8744958
http://dx.doi.org/10.3758/BF03200763
http://www.ncbi.nlm.nih.gov/pubmed/24203416
http://dx.doi.org/10.1076/jcen.20.2.137.1170
http://dx.doi.org/10.1076/jcen.20.2.137.1170
http://www.ncbi.nlm.nih.gov/pubmed/9777467
http://dx.doi.org/10.1016/j.cortex.2006.04.002
http://www.ncbi.nlm.nih.gov/pubmed/18387545
http://www.ncbi.nlm.nih.gov/pubmed/11125241
http://dx.doi.org/10.1080/02699050600909763
http://www.ncbi.nlm.nih.gov/pubmed/17062428
http://dx.doi.org/10.1080/09297049.2013.799645
http://www.ncbi.nlm.nih.gov/pubmed/23731209
http://www.ncbi.nlm.nih.gov/pubmed/9055277


40. Troyer AK, Moscovitch M, Winocur G, Alexander MP, Stuss D. Clustering and switching on verbal flu-

ency: the effects of focal frontal- and temporal-lobe lesions. Neuropsychologia. 1998; 36(6):499–504.

PMID: 9705059

41. Koren R, Kofman O, Berger A. Analysis of word clustering in verbal fluency of school-aged children.

Arch Clin Neuropsychol. 2005; 20(8):1087–104. Epub 2005/08/30. doi: 10.1016/j.acn.2005.06.012

PMID: 16125896

42. Lanting S, Haugrud N, Crossley M. The effect of age and sex on clustering and switching during

speeded verbal fluency tasks. J Int Neuropsychol Soc. 2009; 15(2):196–204. doi: 10.1017/

S1355617709090237 PMID: 19203431

43. Troyer AK. Normative data for clustering and switching on verbal fluency tasks. J Clin Exp Neuropsy-

chol. 2000; 22(3):370–8. Epub 2000/06/16. doi: 10.1076/1380-3395(200006)22:3;1-V;FT370 PMID:

10855044

44. Haugrud N, Crossley M, Vrbancic M. Clustering and switching strategies during verbal fluency perfor-

mance differentiate Alzheimer’s disease and healthy aging. J Int Neuropsychol Soc. 2011; 17

(6):1153–7. Epub 2011/10/22. doi: 10.1017/S1355617711001196 PMID: 22014065

45. Nicodemus KK, Elvevag B, Foltz PW, Rosenstein M, Diaz-Asper C, Weinberger DR. Category fluency,

latent semantic analysis and schizophrenia: a candidate gene approach. Cortex. 2014; 55:182–91.

Epub 2014/01/23. PubMed Central PMCID: PMC4039573. doi: 10.1016/j.cortex.2013.12.004 PMID:

24447899

46. Zakzanis KK, McDonald K, Troyer AK. Component analysis of verbal fluency in patients with mild trau-

matic brain injury. J Clin Exp Neuropsychol. 2011; 33(7):785–92. Epub 2011/04/12. doi: 10.1080/

13803395.2011.558496 PMID: 21480023

47. Zakzanis KK, McDonald K, Troyer AK. Component analysis of verbal fluency scores in severe traumatic

brain injury. Brain Inj. 2013; 27(7–8):903–8. doi: 10.3109/02699052.2013.775505 PMID: 23758471

48. Ledoux K, Vannorsdall TD, Pickett EJ, Bosley LV, Gordon B, Schretlen DJ. Capturing additional infor-

mation about the organization of entries in the lexicon from verbal fluency productions. J Clin Exp Neu-

ropsychol. 2014; 36(2):205–20. doi: 10.1080/13803395.2013.878689 PMID: 24512631

49. Robert P, Migneco V, Marmod D, Chaix I, Thauby S, Benoit M, et al. Verbal fluency in schizophrenia:

The role of semantic clustering in category instance generation. Eur Psychiatry. 1997; 12(3):124–9.

Epub 1997/01/01. doi: 10.1016/S0924-9338(97)80200-3 PMID: 19698518

50. Rosselli M, Tappen R, Williams C, Salvatierra J, Zoller Y. Level of education and category fluency task

among Spanish speaking elders: number of words, clustering, and switching strategies. Neuropsychol

Dev Cogn B Aging Neuropsychol Cogn. 2009; 16(6):721–44. Epub 2009/06/06. doi: 10.1080/

13825580902912739 PMID: 19492199

51. Roberts PM, Le Dorze G. Semantic organization, strategy use, and productivity in bilingual semantic

verbal fluency. Brain Lang. 1997; 59(3):412–49. Epub 1997/09/23. PMID: 9299071

52. Ross TP, Calhoun E, Cox T, Wenner C, Kono W, Pleasant M. The reliability and validity of qualitative

scores for the Controlled Oral Word Association Test. Arch Clin Neuropsychol. 2007; 22(4):475–88.

doi: 10.1016/j.acn.2007.01.026 PMID: 17317094

53. Ross TP. The reliability of cluster and switch scores for the Controlled Oral Word Association Test.

Arch Clin Neuropsychol. 2003; 18(2):153–64. PMID: 14591467

54. Landauer TK, Foltz PW, Laham D. An introduction to latent semantic analysis. Discourse Processes.

1998; 25(2–3):259–84.

55. Hills TT, Jones MN, Todd PM. Optimal foraging in semantic memory. Psychol Rev. 2012; 119(2):431–

40. Epub 2012/02/15. doi: 10.1037/a0027373 PMID: 22329683

56. Jones MN, Mewhort DJ. Representing word meaning and order information in a composite holo-

graphic lexicon. Psychological Review. 2007; 114(1):1. doi: 10.1037/0033-295X.114.1.1 PMID:

17227180

57. Gabrilovich E, Markovitch S. Wikipedia-based Semantic Interpretation for Natural Language Process-

ing. Journal of Artificial Intelligence Research. 2009; 34:443–98.

58. Egozi O, Markovitch S, Gabrilovich E. Concept-Based Information Retrieval Using Explicit Semantic

Analysis. ACM Trans Inf Syst. 2011; 29(2):1–34.

59. Van der Elst W, Van Boxtel MP, Van Breukelen GJ, Jolles J. Normative data for the Animal, Profession

and Letter M Naming verbal fluency tests for Dutch speaking participants and the effects of age, edu-

cation, and sex. J Int Neuropsychol Soc. 2006; 12(1):80–9. doi: 10.1017/S1355617706060115 PMID:

16433947

60. Hoogendam YY, Hofman A, van der Geest JN, van der Lugt A, Ikram MA. Patterns of cognitive func-

tion in aging: the Rotterdam Study. European journal of epidemiology. 2014; 29(2):133–40. Epub

2014/02/21. doi: 10.1007/s10654-014-9885-4 PMID: 24553905

Computerized Measurement of Verbal Fluency

PLOS ONE | DOI:10.1371/journal.pone.0166439 December 9, 2016 34 / 37

http://www.ncbi.nlm.nih.gov/pubmed/9705059
http://dx.doi.org/10.1016/j.acn.2005.06.012
http://www.ncbi.nlm.nih.gov/pubmed/16125896
http://dx.doi.org/10.1017/S1355617709090237
http://dx.doi.org/10.1017/S1355617709090237
http://www.ncbi.nlm.nih.gov/pubmed/19203431
http://dx.doi.org/10.1076/1380-3395(200006)22:3;1-V;FT370
http://www.ncbi.nlm.nih.gov/pubmed/10855044
http://dx.doi.org/10.1017/S1355617711001196
http://www.ncbi.nlm.nih.gov/pubmed/22014065
http://dx.doi.org/10.1016/j.cortex.2013.12.004
http://www.ncbi.nlm.nih.gov/pubmed/24447899
http://dx.doi.org/10.1080/13803395.2011.558496
http://dx.doi.org/10.1080/13803395.2011.558496
http://www.ncbi.nlm.nih.gov/pubmed/21480023
http://dx.doi.org/10.3109/02699052.2013.775505
http://www.ncbi.nlm.nih.gov/pubmed/23758471
http://dx.doi.org/10.1080/13803395.2013.878689
http://www.ncbi.nlm.nih.gov/pubmed/24512631
http://dx.doi.org/10.1016/S0924-9338(97)80200-3
http://www.ncbi.nlm.nih.gov/pubmed/19698518
http://dx.doi.org/10.1080/13825580902912739
http://dx.doi.org/10.1080/13825580902912739
http://www.ncbi.nlm.nih.gov/pubmed/19492199
http://www.ncbi.nlm.nih.gov/pubmed/9299071
http://dx.doi.org/10.1016/j.acn.2007.01.026
http://www.ncbi.nlm.nih.gov/pubmed/17317094
http://www.ncbi.nlm.nih.gov/pubmed/14591467
http://dx.doi.org/10.1037/a0027373
http://www.ncbi.nlm.nih.gov/pubmed/22329683
http://dx.doi.org/10.1037/0033-295X.114.1.1
http://www.ncbi.nlm.nih.gov/pubmed/17227180
http://dx.doi.org/10.1017/S1355617706060115
http://www.ncbi.nlm.nih.gov/pubmed/16433947
http://dx.doi.org/10.1007/s10654-014-9885-4
http://www.ncbi.nlm.nih.gov/pubmed/24553905


61. Zahodne LB, Glymour MM, Sparks C, Bontempo D, Dixon RA, MacDonald SW, et al. Education does

not slow cognitive decline with aging: 12-year evidence from the victoria longitudinal study. J Int Neu-

ropsychol Soc. 2011; 17(6):1039–46. PubMed Central PMCID: PMC3285821. doi: 10.1017/

S1355617711001044 PMID: 21923980

62. de Azeredo Passos VM, Giatti L, Bensenor I, Tiemeier H, Ikram MA, de Figueiredo RC, et al. Educa-

tion plays a greater role than age in cognitive test performance among participants of the Brazilian Lon-

gitudinal Study of Adult Health (ELSA-Brasil). BMC Neurol. 2015; 15(1):191. PubMed Central PMCID:

PMC4600259.

63. Shao Z, Janse E, Visser K, Meyer AS. What do verbal fluency tasks measure? Predictors of verbal flu-

ency performance in older adults. Front Psychol. 2014; 5:772. PubMed Central PMCID:

PMC4106453. doi: 10.3389/fpsyg.2014.00772 PMID: 25101034

64. Stolwyk R, Bannirchelvam B, Kraan C, Simpson K. The cognitive abilities associated with verbal flu-

ency task performance differ across fluency variants and age groups in healthy young and old adults.

J Clin Exp Neuropsychol. 2015:1–14. Epub 2015/02/07.

65. Roldan-Tapia L, Garcia J, Canovas R, Leon I. Cognitive reserve, age, and their relation to attentional

and executive functions. Applied neuropsychology Adult. 2012; 19(1):2–8. Epub 2012/03/06. doi: 10.

1080/09084282.2011.595458 PMID: 22385373

66. Hankee LD, Preis SR, Beiser AS, Devine SA, Liu Y, Seshadri S, et al. Qualitative neuropsychological

measures: normative data on executive functioning tests from the Framingham offspring study. Exp

Aging Res. 2013; 39(5):515–35. Epub 2013/10/25. PubMed Central PMCID: PMC3836045. doi: 10.

1080/0361073X.2013.839029 PMID: 24151914

67. Tallberg IM, Ivachova E, Jones Tinghag K, Ostberg P. Swedish norms for word fluency tests: FAS, ani-

mals and verbs. Scand J Psychol. 2008; 49(5):479–85. doi: 10.1111/j.1467-9450.2008.00653.x PMID:

18452499

68. Llewellyn DJ, Matthews FE. Increasing levels of semantic verbal fluency in elderly English adults. Neu-

ropsychol Dev Cogn B Aging Neuropsychol Cogn. 2009; 16(4):433–45. Epub 2009/03/26. doi: 10.

1080/13825580902773867 PMID: 19319746

69. Rodriguez-Aranda C, Martinussen M. Age-related differences in performance of phonemic verbal flu-

ency measured by Controlled Oral Word Association Task (COWAT): a meta-analytic study. Dev Neu-

ropsychol. 2006; 30(2):697–717. Epub 2006/09/26. doi: 10.1207/s15326942dn3002_3 PMID:

16995832

70. Khalil MS. Preliminary Arabic normative data of neuropsychological tests: the verbal and design flu-

ency. J Clin Exp Neuropsychol. 2010; 32(9):1028–35. Epub 2010/06/08. doi: 10.1080/

13803391003672305 PMID: 20526932

71. Loonstra AS, Tarlow AR, Sellers AH. COWAT metanorms across age, education, and gender. Appl

Neuropsychol. 2001; 8(3):161–6. doi: 10.1207/S15324826AN0803_5 PMID: 11686651

72. Zarino B, Crespi M, Launi M, Casarotti A. A new standardization of semantic verbal fluency test. Neu-

rol Sci. 2014; 35(9):1405–11. doi: 10.1007/s10072-014-1729-1 PMID: 24705901

73. Hubel KA, Reed B, Yund EW, Herron TJ, Woods DL. Computerized measures of finger tapping:

effects of hand dominance, age, and sex. Percept Mot Skills. 2013; 116(3):929–52. Epub 2013/11/02.

doi: 10.2466/25.29.PMS.116.3.929-952 PMID: 24175464

74. Hubel KA, Yund EW, Herron TJ, Woods DL. Computerized measures of finger tapping: reliability,

malingering and traumatic brain injury. J Clin Exp Neuropsychol. 2013; 35(7):745–58. Epub 2013/08/

21. doi: 10.1080/13803395.2013.824070 PMID: 23947782

75. Woods DL, Wyma JM, Yund EW, Herron TJ. The Effects of Repeated Testing, Simulated Malingering,

and Traumatic Brain Injury on Visual Choice Reaction Time. Front Hum Neurosci. 2015; 9:595. Epub

2015/12/05. doi: 10.3389/fnhum.2015.00595 PMID: 26635569

76. Woods DL, Wyma JW, Herron TJ, Yund EW. The Effects of Repeated Testing, Simulated Malingering,

and Traumatic Brain Injury on High-Precision Measures of Simple Visual Reaction Time. Front Hum

Neurosci. 2015; 9:540. Epub 2015/12/01. PubMed Central PMCID: PMC4637414. doi: 10.3389/

fnhum.2015.00540 PMID: 26617505

77. Woods DL, Kishiyama MM, Yund EW, Herron TJ, Edwards B, Poliva O, et al. Improving digit span

assessment of short-term verbal memory. J Clin Exp Neuropsychol. 2011; 33(1):101–11. doi: 10.

1080/13803395.2010.493149 PMID: 20680884

78. Woods DL, Kishiyama MM, Yund EW, Herron TJ, Hink RF, Reed B. Computerized analysis of error

patterns in digit span recall. J Clin Exp Neuropsychol. 2011; 33(7):721–34. Epub 2010/08/04. doi: 10.

1080/13803395.2010.550602 PMID: 21957866

79. Woods DL, Wyma JW, Herron TJ, Yund EW. The effects of repeat testing, malingering, and traumatic

brain injury on computerized measures of visuospatial memory span Front Hum Neurosci. 2015.

Computerized Measurement of Verbal Fluency

PLOS ONE | DOI:10.1371/journal.pone.0166439 December 9, 2016 35 / 37

http://dx.doi.org/10.1017/S1355617711001044
http://dx.doi.org/10.1017/S1355617711001044
http://www.ncbi.nlm.nih.gov/pubmed/21923980
http://dx.doi.org/10.3389/fpsyg.2014.00772
http://www.ncbi.nlm.nih.gov/pubmed/25101034
http://dx.doi.org/10.1080/09084282.2011.595458
http://dx.doi.org/10.1080/09084282.2011.595458
http://www.ncbi.nlm.nih.gov/pubmed/22385373
http://dx.doi.org/10.1080/0361073X.2013.839029
http://dx.doi.org/10.1080/0361073X.2013.839029
http://www.ncbi.nlm.nih.gov/pubmed/24151914
http://dx.doi.org/10.1111/j.1467-9450.2008.00653.x
http://www.ncbi.nlm.nih.gov/pubmed/18452499
http://dx.doi.org/10.1080/13825580902773867
http://dx.doi.org/10.1080/13825580902773867
http://www.ncbi.nlm.nih.gov/pubmed/19319746
http://dx.doi.org/10.1207/s15326942dn3002_3
http://www.ncbi.nlm.nih.gov/pubmed/16995832
http://dx.doi.org/10.1080/13803391003672305
http://dx.doi.org/10.1080/13803391003672305
http://www.ncbi.nlm.nih.gov/pubmed/20526932
http://dx.doi.org/10.1207/S15324826AN0803_5
http://www.ncbi.nlm.nih.gov/pubmed/11686651
http://dx.doi.org/10.1007/s10072-014-1729-1
http://www.ncbi.nlm.nih.gov/pubmed/24705901
http://dx.doi.org/10.2466/25.29.PMS.116.3.929-952
http://www.ncbi.nlm.nih.gov/pubmed/24175464
http://dx.doi.org/10.1080/13803395.2013.824070
http://www.ncbi.nlm.nih.gov/pubmed/23947782
http://dx.doi.org/10.3389/fnhum.2015.00595
http://www.ncbi.nlm.nih.gov/pubmed/26635569
http://dx.doi.org/10.3389/fnhum.2015.00540
http://dx.doi.org/10.3389/fnhum.2015.00540
http://www.ncbi.nlm.nih.gov/pubmed/26617505
http://dx.doi.org/10.1080/13803395.2010.493149
http://dx.doi.org/10.1080/13803395.2010.493149
http://www.ncbi.nlm.nih.gov/pubmed/20680884
http://dx.doi.org/10.1080/13803395.2010.550602
http://dx.doi.org/10.1080/13803395.2010.550602
http://www.ncbi.nlm.nih.gov/pubmed/21957866


80. Woods DL, Wyma JW, Herron TJ, Yund EW. An improved spatial span test of visuospatial memory.

Memory. 2015:1–14. Epub 2015/09/12.

81. Woods DL, Wyma JW, Herron TJ, Yund EW. The Effects of Aging, Malingering, and Traumatic Brain

Injury on Computerized Trail-Making Test Performance. PLoS One. 2015; 10(6):e0124345. Epub

2015/06/11. doi: 10.1371/journal.pone.0124345 PMID: 26060999

82. Woods DL, Wyma JW, Herron TJ, Yund EW. A computerized test of design fluency. PLoS One. 2016.

83. Woods DL, Wyma JW, Herron TJ, Yund EW, Reed B. Age-related slowing of response selection and

production in a visual choice reaction time task. Front Hum Neurosci. 2015; 9:193. Epub 2015/05/09.

PubMed Central PMCID: PMC4407573. doi: 10.3389/fnhum.2015.00193 PMID: 25954175

84. Woods DL, Wyma JW, Herron TJ, Yund EW. The Dyad-Adaptive Paced Auditory Serial Addition Test

(DA-PASAT): Normative data, and the effects of repeated testing, simulated malingering, and trau-

matic brain injury. Frontiers in Human Neuroscience. 2016.

85. Woods DL, Yund EW, Wyma JM, Ruff R, Herron TJ. Measuring executive function in control subjects

and TBI patients with question completion time (QCT). Front Hum Neurosci. 2015; 9:288. doi: 10.

3389/fnhum.2015.00288 PMID: 26042021

86. John D, Bassett D, Thompson D, Fairbrother J, Baldwin D. Effect of using a treadmill workstation on

performance of simulated office work tasks. Journal of physical activity & health. 2009; 6(5):617–24.

87. Ide N, Macleod C, editors. The american national corpus: A standardized resource of american

english. Proceedings of Corpus Linguistics 2001; 2001.

88. Ehlen F, Fromm O, Vonberg I, Klostermann F. Overcoming duality: the fused bousfieldian function for

modeling word production in verbal fluency tasks. Psychon Bull Rev. 2015. Epub 2015/12/31.

89. Dykiert D, Deary IJ. Retrospective validation of WTAR and NART scores as estimators of prior cogni-

tive ability using the Lothian Birth Cohort 1936. Psychol Assess. 2013; 25(4):1361–6. doi: 10.1037/

a0033623 PMID: 23815111

90. Green RE, Melo B, Christensen B, Ngo LA, Monette G, Bradbury C. Measuring premorbid IQ in trau-

matic brain injury: an examination of the validity of the Wechsler Test of Adult Reading (WTAR). J Clin

Exp Neuropsychol. 2008; 30(2):163–72. Epub 2008/01/24. doi: 10.1080/13803390701300524 PMID:

18213530

91. Hall JR, Harvey M, Vo HT, O’Bryant SE. Performance on a measure of category fluency in cognitively

impaired elderly. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2011; 18(3):353–61. doi: 10.

1080/13825585.2011.557495 PMID: 21390875

92. van Hooren SA, Valentijn AM, Bosma H, Ponds RW, van Boxtel MP, Jolles J. Cognitive functioning in

healthy older adults aged 64–81: a cohort study into the effects of age, sex, and education. Neuropsy-

chol Dev Cogn B Aging Neuropsychol Cogn. 2007; 14(1):40–54. Epub 2006/12/14. doi: 10.1080/

138255890969483 PMID: 17164189

93. Delis DC, Kaplan E, Kramer JH. Delis-Kaplan Executive Function System (D-KEFS). San Antonio,

TX: The Psychological Corporation; 2001.

94. Basso MR, Bornstein RA, Lang JM. Practice effects on commonly used measures of executive func-

tion across twelve months. Clin Neuropsychol. 1999; 13(3):283–92. Epub 2000/03/22. doi: 10.1076/

clin.13.3.283.1743 PMID: 10726600

95. Woods SP, Scott JC, Sires DA, Grant I, Heaton RK, Troster AI, et al. Action (verb) fluency: test-retest

reliability, normative standards, and construct validity. J Int Neuropsychol Soc. 2005; 11(4):408–15.

PMID: 16209421

96. Demakis GJ. Serial malingering on verbal and nonverbal fluency and memory measures: an analog

investigation. Arch Clin Neuropsychol. 1999; 14(4):401–10. PMID: 14590593

97. Curtis KL, Thompson LK, Greve KW, Bianchini KJ. Verbal fluency indicators of malingering in trau-

matic brain injury: classification accuracy in known groups. Clin Neuropsychol. 2008; 22(5):930–45.

doi: 10.1080/13854040701563591 PMID: 18756393

98. Sugarman MA, Axelrod BN. Embedded measures of performance validity using verbal fluency tests in

a clinical sample. Applied neuropsychology Adult. 2015; 22(2):141–6. doi: 10.1080/23279095.2013.

873439 PMID: 25153155

99. Woods DL, Wyma JM, Herron TJ, Yund EW. The Effects of Repeat Testing, Malingering, and Trau-

matic Brain Injury on Computerized Measures of Visuospatial Memory Span. Front Hum Neurosci.

2015; 9:690. Epub 2016/01/19. PubMed Central PMCID: PMC4700270. doi: 10.3389/fnhum.2015.

00690 PMID: 26779001

100. Woods DL, Wyma JW, Herron TJ, Yund EW. The Bay Area Verbal Learning Test (BAVLT): normative

data and the effects of repeated testing, simulated malingering, and traumatic brain injury. PLoS One.

2016.

Computerized Measurement of Verbal Fluency

PLOS ONE | DOI:10.1371/journal.pone.0166439 December 9, 2016 36 / 37

http://dx.doi.org/10.1371/journal.pone.0124345
http://www.ncbi.nlm.nih.gov/pubmed/26060999
http://dx.doi.org/10.3389/fnhum.2015.00193
http://www.ncbi.nlm.nih.gov/pubmed/25954175
http://dx.doi.org/10.3389/fnhum.2015.00288
http://dx.doi.org/10.3389/fnhum.2015.00288
http://www.ncbi.nlm.nih.gov/pubmed/26042021
http://dx.doi.org/10.1037/a0033623
http://dx.doi.org/10.1037/a0033623
http://www.ncbi.nlm.nih.gov/pubmed/23815111
http://dx.doi.org/10.1080/13803390701300524
http://www.ncbi.nlm.nih.gov/pubmed/18213530
http://dx.doi.org/10.1080/13825585.2011.557495
http://dx.doi.org/10.1080/13825585.2011.557495
http://www.ncbi.nlm.nih.gov/pubmed/21390875
http://dx.doi.org/10.1080/138255890969483
http://dx.doi.org/10.1080/138255890969483
http://www.ncbi.nlm.nih.gov/pubmed/17164189
http://dx.doi.org/10.1076/clin.13.3.283.1743
http://dx.doi.org/10.1076/clin.13.3.283.1743
http://www.ncbi.nlm.nih.gov/pubmed/10726600
http://www.ncbi.nlm.nih.gov/pubmed/16209421
http://www.ncbi.nlm.nih.gov/pubmed/14590593
http://dx.doi.org/10.1080/13854040701563591
http://www.ncbi.nlm.nih.gov/pubmed/18756393
http://dx.doi.org/10.1080/23279095.2013.873439
http://dx.doi.org/10.1080/23279095.2013.873439
http://www.ncbi.nlm.nih.gov/pubmed/25153155
http://dx.doi.org/10.3389/fnhum.2015.00690
http://dx.doi.org/10.3389/fnhum.2015.00690
http://www.ncbi.nlm.nih.gov/pubmed/26779001


101. Pakhomov SV, Eberly L, Knopman D. Characterizing cognitive performance in a large longitudinal

study of aging with computerized semantic indices of verbal fluency. Neuropsychologia. 2016; 89:42–

56. Epub 2016/06/02. doi: 10.1016/j.neuropsychologia.2016.05.031 PMID: 27245645

102. McCauley SR, Wilde EA, Barnes A, Hanten G, Hunter JV, Levin HS, et al. Patterns of early emotional

and neuropsychological sequelae after mild traumatic brain injury. J Neurotrauma. 2014; 31(10):914–

25. PubMed Central PMCID: PMC4012631. doi: 10.1089/neu.2012.2826 PMID: 24344952

103. Tsirka V, Simos P, Vakis A, Vourkas M, Arzoglou V, Syrmos N, et al. Material-specific difficulties in epi-

sodic memory tasks in mild traumatic brain injury. Int J Neurosci. 2010; 120(3):184–91. doi: 10.3109/

00207450903585308 PMID: 20374085

104. Vanderploeg RD, Curtiss G, Belanger HG. Long-term neuropsychological outcomes following mild

traumatic brain injury. J Int Neuropsychol Soc. 2005; 11(3):228–36. doi: 10.1017/

S1355617705050289 PMID: 15892899

105. Mathias JL, Beall JA, Bigler ED. Neuropsychological and information processing deficits following mild

traumatic brain injury. J Int Neuropsychol Soc. 2004; 10(2):286–97. doi: 10.1017/

S1355617704102117 PMID: 15012849

106. Drake AI, Gray N, Yoder S, Pramuka M, Llewellyn M. Factors predicting return to work following mild

traumatic brain injury: a discriminant analysis. J Head Trauma Rehabil. 2000; 15(5):1103–12. PMID:

10970931

107. Raskin SA, Rearick E. Verbal fluency in individuals with mild traumatic brain injury. Neuropsychology.

1996; 10(3):416–22.

108. Peskind ER, Petrie EC, Cross DJ, Pagulayan K, McCraw K, Hoff D, et al. Cerebrocerebellar hypome-

tabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war Veterans

with persistent post-concussive symptoms. Neuroimage. 2011; 54 Suppl 1:S76–82. PubMed Central

PMCID: PMC3264671.

109. Shandera-Ochsner AL, Berry DT, Harp JP, Edmundson M, Graue LO, Roach A, et al. Neuropsycho-

logical effects of self-reported deployment-related mild TBI and current PTSD in OIF/OEF veterans.

Clin Neuropsychol. 2013; 27(6):881–907. doi: 10.1080/13854046.2013.802017 PMID: 23755991

110. Verfaellie M, Lafleche G, Spiro A, Bousquet K. Neuropsychological outcomes in OEF/OIF veterans

with self-report of blast exposure: associations with mental health, but not MTBI. Neuropsychology.

2014; 28(3):337–46. doi: 10.1037/neu0000027 PMID: 24245929

111. Mac Donald CL, Adam OR, Johnson AM, Nelson EC, Werner NJ, Rivet DJ, et al. Acute post-traumatic

stress symptoms and age predict outcome in military blast concussion. Brain. 2015; 138(Pt 5):1314–

26. Epub 2015/03/06. doi: 10.1093/brain/awv038 PMID: 25740219

112. Cralidis A, Lundgren K. Component analysis of verbal fluency performance in younger participants

with moderate-to-severe traumatic brain injury. Brain Inj. 2014; 28(4):456–64. doi: 10.3109/02699052.

2014.896945 PMID: 24678825

113. Kave G, Heled E, Vakil E, Agranov E. Which verbal fluency measure is most useful in demonstrating

executive deficits after traumatic brain injury? J Clin Exp Neuropsychol. 2011; 33(3):358–65. doi: 10.

1080/13803395.2010.518703 PMID: 21058118

114. Turken AU, Herron TJ, Kang X, O’Connor LE, Sorenson DJ, Baldo JV, et al. Multimodal surface-

based morphometry reveals diffuse cortical atrophy in traumatic brain injury. BMC Med Imaging. 2009;

9:20. doi: 10.1186/1471-2342-9-20 PMID: 20043859

Computerized Measurement of Verbal Fluency

PLOS ONE | DOI:10.1371/journal.pone.0166439 December 9, 2016 37 / 37

http://dx.doi.org/10.1016/j.neuropsychologia.2016.05.031
http://www.ncbi.nlm.nih.gov/pubmed/27245645
http://dx.doi.org/10.1089/neu.2012.2826
http://www.ncbi.nlm.nih.gov/pubmed/24344952
http://dx.doi.org/10.3109/00207450903585308
http://dx.doi.org/10.3109/00207450903585308
http://www.ncbi.nlm.nih.gov/pubmed/20374085
http://dx.doi.org/10.1017/S1355617705050289
http://dx.doi.org/10.1017/S1355617705050289
http://www.ncbi.nlm.nih.gov/pubmed/15892899
http://dx.doi.org/10.1017/S1355617704102117
http://dx.doi.org/10.1017/S1355617704102117
http://www.ncbi.nlm.nih.gov/pubmed/15012849
http://www.ncbi.nlm.nih.gov/pubmed/10970931
http://dx.doi.org/10.1080/13854046.2013.802017
http://www.ncbi.nlm.nih.gov/pubmed/23755991
http://dx.doi.org/10.1037/neu0000027
http://www.ncbi.nlm.nih.gov/pubmed/24245929
http://dx.doi.org/10.1093/brain/awv038
http://www.ncbi.nlm.nih.gov/pubmed/25740219
http://dx.doi.org/10.3109/02699052.2014.896945
http://dx.doi.org/10.3109/02699052.2014.896945
http://www.ncbi.nlm.nih.gov/pubmed/24678825
http://dx.doi.org/10.1080/13803395.2010.518703
http://dx.doi.org/10.1080/13803395.2010.518703
http://www.ncbi.nlm.nih.gov/pubmed/21058118
http://dx.doi.org/10.1186/1471-2342-9-20
http://www.ncbi.nlm.nih.gov/pubmed/20043859

