P1-622

VA Northern California HEALTH CARE SYSTEM

Introduction The California Cognitive Assessment Battery (CCAB; ccabstudy.com) is a remotely monitored, at-home, computerized behavioral test and questionnaire suite. Here we evaluate the interpretation of 25 tests within the US English version of the CCAB using both an exploratory factor analysis (EFA) of 155 healthy adults and a confirmatory factor analysis (CFA) of 312 healthy older adults participating in a longitudinal study. We also estimated crosssectional age gradients for best fitting latent factors [1].

Methods

- One set of latent factors (from 1 to 8 factors) was extracted from the literature [2][3][4][5][6] for assignment of CCAB tests into traditional test categories.
- 155 adult participants (age 22-86 y.o., mn 54, 57% male, education 8-20 yrs., md 14, 73% white) participated in a prefinal version of the CCAB. EFA was performed on their primary CCAB results using the 'psych' (v. 1.9.12.31-1) toolbox in R (v. 3.6.3) with 11 different rotations to extract a second set of CFA latent factors. • The two sets of latent factors
- defined models used in the 'lavaan' CFA toolbox (v. 0.6.5-1) in R and applied to the first timepoint (enrollment and session 1) of CCAB longitudinal data from an older adult group (age 56-89 y.o., mn 71, 58% male, education 8-20 yrs., mn 14, 71% white).

Figure 1: Literature-based 8 latent factor CFA model including 3 demographic regressors. Edge thickness reflects SEM link standardized strength. Circles are latent variables (LVs). RHS arrows are model covariates.

Execut

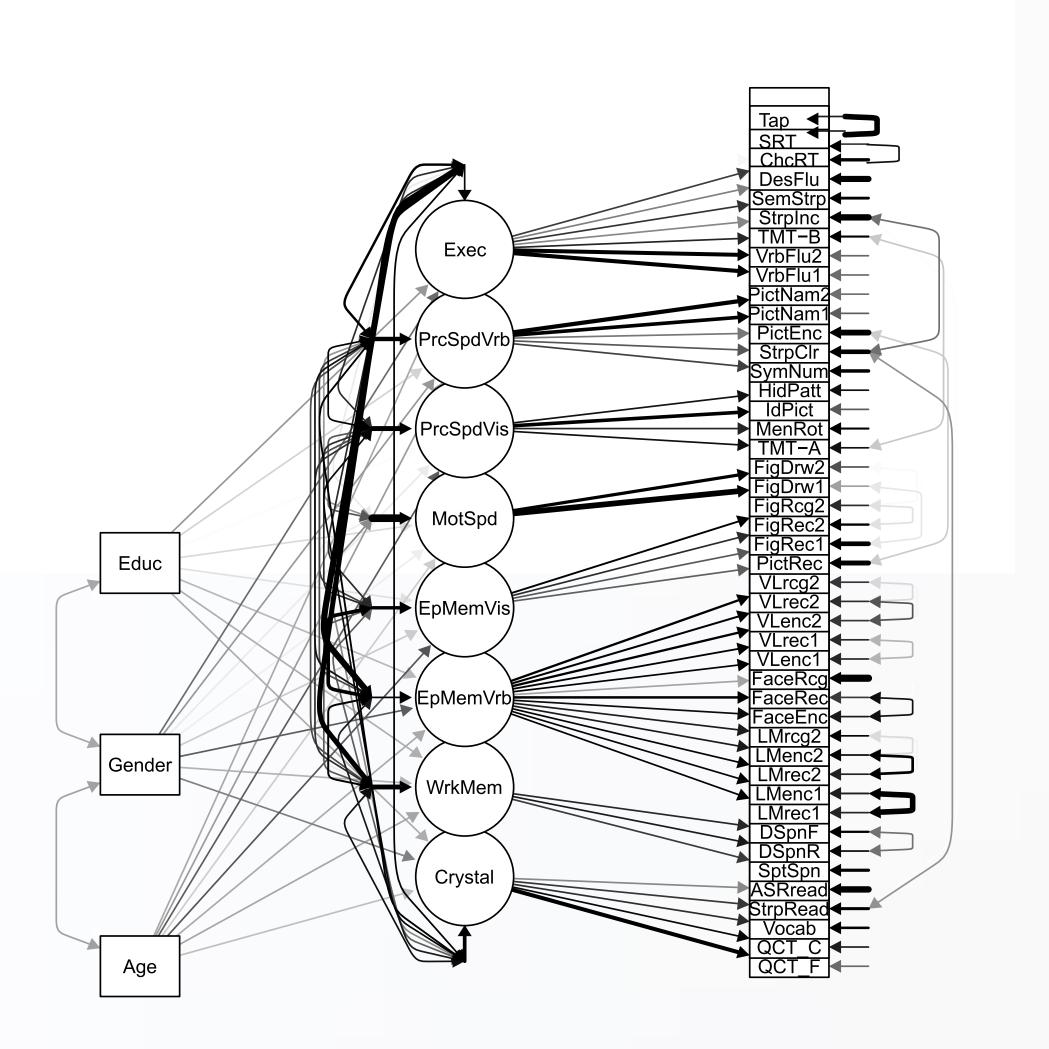
Percep

Percep

Senso

Episod

Episod


Workir

Crysta

Figure

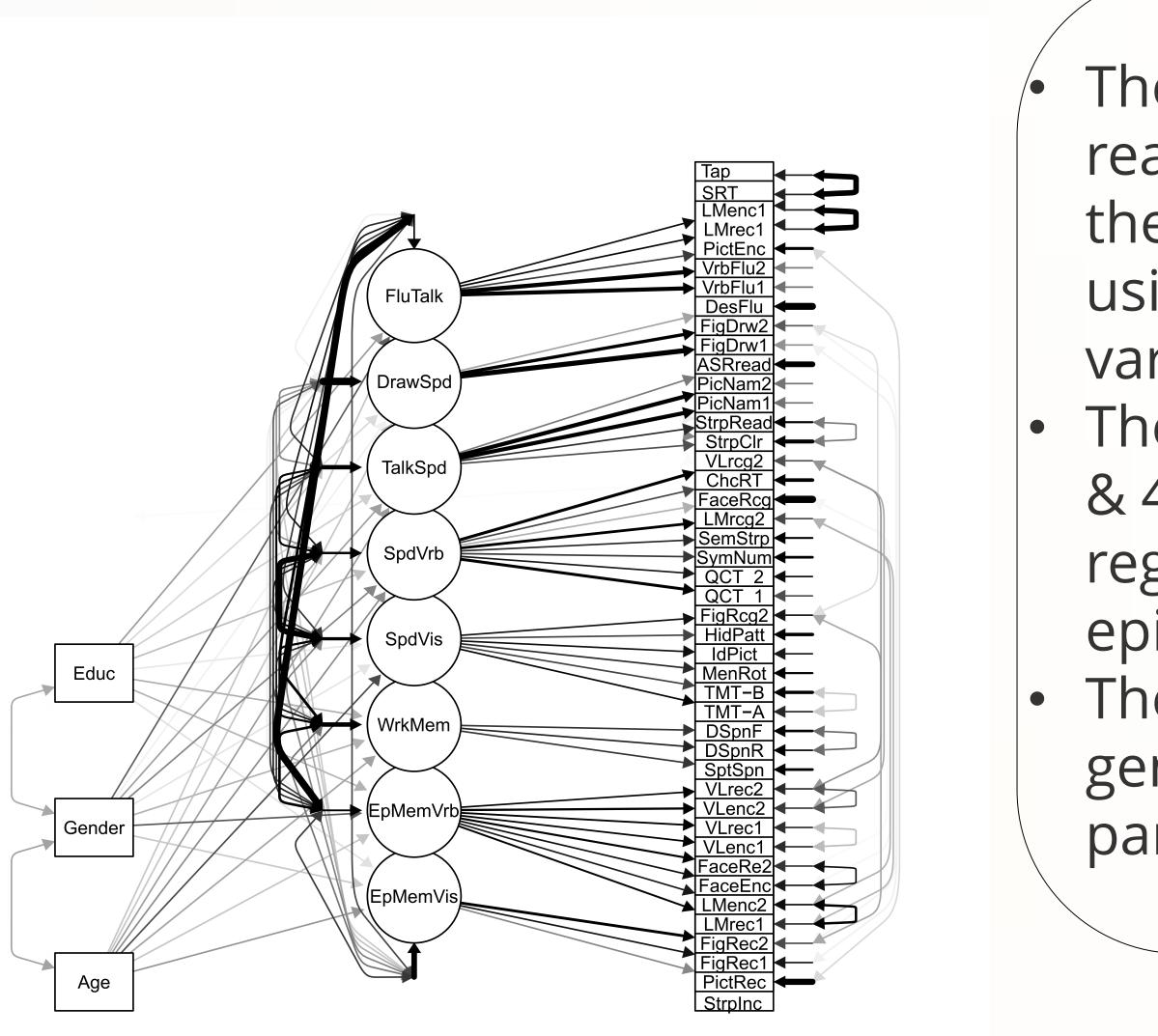
[*Executive*] Category Fluency 1&2, Trails-B, Stroop Interference, Design Fluency, Choice RT [Perceptual Speed Verbal] Symbol-Number, Stroop Color, Picture Description, Continuous Picture Naming 1&2 [Perceptual Speed Visual] Trails-A, Mental Rotation, Identical Pictures, Hidden Patterns

Factor Analyses and Age Effects in the CCAB At-Home Computerized Cognitive Test Battery TJ Herron¹, JM Chok^{1,3}, SJ Lwi¹, K Schendel¹, B Curran¹, K Geraci², M Blank², G Williams², K Hall², DL Woods² and J Baldo¹ ¹VA Northern California Healthcare System, ²Neurobehavioral Systems, Inc., ³Palo Alto University

		Z-scor
tive	Age	4.0
	Female	-6.4
	Education	-4.8
otual Speed Ve	rbal Age	4.1
	Female	-4.2
	Education	-1.9
otial Speed Vis	ual Age	6.3
	Female	0.8
	Education	-0.1
ry Motor Spee	d Age	2.0
	Female	-0.6
	Education	1.5
dic Memory Vis	sual Age	5.8
	Female	-1.9
	Education	-1.2
dic Memory Ve	rbal Age	-4.1
	Female	7.2
	Education	3.4
ng Memory	Age	-2.8
	Female	2.4
	Education	2.6
Ilized Ability	Age	2.7
	Female	-5.0
	Education	-3.5
e 3: Estimat	ted regressoi	^ Z—
	$(\Gamma_{i} \alpha 1)$	

scores for the CFA (Fig 1) using literature-based latent factors.

Female Educatio **Drawing Speed** Age Female Educatio Talking Speed Age Female Educatio **Speed Verbal** Age Female Educatio **Speed Visual** Age Female Educatio Working Memory Age **Female** Educatio **Episodic Memory Verbal** Age Female Educatio **Episodic Memory Visual** Age Female Educatio Figure 4: Estimated regresse scores for the CFA using EFA


[Sensory Motor Speed] Figure Copy 1&2 [Episodic Memory Visual] Picture Descriptio Recall, Figure Copy Recall 1&2 & Recognition [Working Memory] Digit Span Forward and Reverse, Spatial Span

latent factors (Fig 2).

[Crystallized Ability] Questionnaire Completion Time 1&2, Vocabulary, Reading Speed 1&2

Figure 2: EFA-based 8 latent factor CFA model including 3 demographic regressors. Note that Finger tapping, simple reaction time, and stroop inhibition did not cluster substantially with other tests in the EFAs under these LVs.

Fluency Plus Age

	Z-score -2.7 7.0						
on	4.6 2.3	LV factor model	Literature-ba	iterature-based CFA		EFA-based CFA	
	-0.6		RMSEA	BIC	RMSEA	BIC	
on	1.5	1-factor	0.073	37044			
	4.1	2-factor	0.072	36999	0.073	37031	
on	-4.0 -2.0	3-factor	0.071	36951	0.071	36011	
•	5.3	4-factor	0.068	36818	0.067	36742	
	-5.4	5-factor	0.068	36805	0.063	36609	
on	-3.0 7.2	6-factor	0.064	36652	0.062	36564	
	-1.1	7-factor	0.064	36617	0.061	36510	
on	-1.0 -3.0	8-factor	0.062	36545	0.058	35624	
on on on	2.4 2.6 -2.7 7.1 3.6 3.9 -2.0 -1.1	Figure 5: CFA m classes of mode in both cases. approximation; criterion	els. The 8 RMSEA: r	3 LV fac oot me	tors wer an squar	re of	
sor z							
A-ba	[<i>Episodi</i> Encodin	<i>c Memory Verbal</i>] Logi g 1&2, Delayed Recall tion, Face-Name Enco	1&2 &	h	[1] Salth [2] Emm [3] Tulsk [4] Earle	nert et a ky et al, es & Sal	l, F tł
	Recall &	Recognition, Verbal Loco g 1&2, Delayed Recall	earning	,u	[5] Verm [6] John		

Recognition

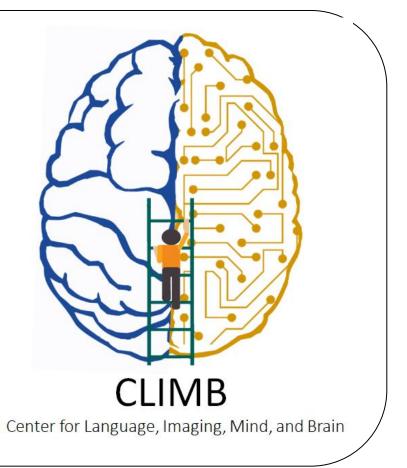
Test List for Figure 1 CFA model

CCOD

neuro behavioral systems

Results

The two CFA models (Fig 1 & 2) show reasonably good model fits (Fig 5) for the best fitting, 8-factor, models using both literature-based latent variables (LVs) or EFA-based LVs. The demographic regressions (Figs 3 & 4) showed particularly strong age regressors for perceptual speed and episodic memory LVs.


There were significant education and gender regressors in both models, particularly of verbal vs. visual LVs.

Discussion Visual tests of both speed and memory displayed more reliable cross-sectional age gradients than did respective verbal response tests. In both models, CCAB test speed measures showed steeper cross-sectional age gradients than did episodic memory measures. • The EFA-derived latent factors were better fitting than were the classic factors as they were

- derived from other CCAB data. • The EFAs produced neither an executive nor a crystallized LV.
- Ongoing longitudinal work will test the utility of visuospatial speed measures in aging and for early detection of MCI [6].

References

ntelligence, 32(6), 2004 , Appl Neuropsych, 25:1 2018 Rehabil Psych, 62(4). 2017 thouse, J Gerontol, v50B, 1995 al, Front Psych, 24 Apr 2020 [6] Johnson et al, Arch Neurol, 66(10) 2009. Supported by NIA R44AG062076

